
Characterization of ultrasound contrast microbubbles
using in vitro experiments and viscous and viscoelastic
interface models for encapsulation

Kausik Sarkara�

Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716

William T. Shi
Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Philips
Research, Briarcliff Manor, New York 10510

Dhiman Chatterjee
Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
and Department of Mechanical Engineering, IIT Madras, Chennai 600036, India

Flemming Forsberg
Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

�Received 20 August 2004; revised 30 March 2005; accepted 6 April 2005�

Zero-thickness interface models are developed to describe the encapsulation of microbubble
contrast agents. Two different rheological models of the interface, Newtonian �viscous� and
viscoelastic, with rheological parameters such as surface tension, surface dilatational viscosity, and
surface dilatational elasticity are presented to characterize the encapsulation. The models are applied
to characterize a widely used microbubble based ultrasound contrast agent. Attenuation of
ultrasound passing through a solution of contrast agent is measured. The model parameters for the
contrast agent are determined by matching the linearized model dynamics with measured
attenuation data. The models are investigated for its ability to match with other experiments.
Specifically, model predictions are compared with scattered fundamental and subharmonic
responses. Experiments and model prediction results are discussed along with those
obtained using an existing model �Church, J. Acoust. Soc. Am. 97, 1510 �1995� and Hoff et al.,
J. Acoust. Soc. Am. 107, 2272 �2000�� of contrast agents. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.1923367�
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I. INTRODUCTION

Microbubble based contrast enhancing agents can
achieve significant improvement of ultrasound images of
blood flow �Goldberg et al., 2001; Frinking et al., 2000�.
These bubbles are encapsulated by a layer of surface active
materials such as lipids or proteins to stabilize them against
premature dissolution in the blood stream �Goldberg et al.,
2001; Frinking et al., 2000�. The performance of these con-
trast agents in vivo depends on their interaction with the in-
cident acoustic pressure. The encapsulation plays a signifi-
cant role in this interaction. Accurate characterization of
contrast agent behavior therefore critically relies on a good
model of the encapsulation. In vitro attenuation and scatter-
ing experiments have been performed on various contrast
agents �e.g., Albunex®, Molecular Biosystems Inc., San Di-
ego, CA; Optison® GE Healthcare, Princeton, NJ; Son-
azoid® GE Healthcare, Oslo, Norway; Definity® of Bristol-
Myers Squibb Medical Imaging, N. Billerica, MA� to
understand and characterize their properties �see, for ex-
ample, Hoff et al., 2000; de Jong et al., 1992; de Jong and
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Hoff, 1993; Frinking and de Jong, 1998; Shi et al., 1999;
Morgan et al., 2000�. Recently, nonlinear contrast behaviors,
both second- and sub-harmonic responses, have been studied
by many researchers �Shi et al., 1999; Simpson et al., 1999;
Chang et al., 1996; de Jong et al., 1994; Shankar et al., 1998;
Shi and Forsberg, 2000�. Contrast agents exhibit stronger
nonlinear response than the surrounding tissue. The en-
hanced nonlinear response is harnessed to improve contrast-
to-tissue signal in various nonlinear imaging modalities such
as harmonic, subharmonic, pulse inversion, or power Dop-
pler imaging.

A number of models for contrast agents have been de-
veloped modifying the free bubble dynamics equation �see,
e.g., Leighton �1994�, p. 303� for the presence of encapsula-
tion. de Jong and co-workers �de Jong et al., 1992; de Jong
and Hoff, 1993; Frinking and de Jong, 1998� initiated sys-
tematic contrast agent modeling with one of the first clini-
cally approved agents, Albunex. They assumed the encapsu-
lating shell to be made of a viscoelastic solid, and used
lumped parameters in the free bubble equation to model its
effects. Church �1995� provided a detailed theoretical model
of contrast agents by treating the encapsulating shell as a
nanometer thick layer of an incompressible rubbery medium

with shear elasticity and viscosity. He demonstrated the sig-
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nificance of the shell parameters by varying them over a
wide range, and obtained fundamental and second-harmonic
response by a perturbation method, but did not try to experi-
mentally relate the model parameters to any specific contrast
agent. Introducing slight compressibility and viscoelasticity
of the surrounding liquid in the same model, Khismatullin
and Nadim �2002� performed a theoretical analysis to con-
clude that these effects are less important than that of the
encapsulation. Morgan et al. �2000� used a modified Herring
equation with a similar model for the encapsulation to com-
pare with optical observations obtained by high-speed digital
camera.

Biochemical analysis with freeze-etching and SEM ob-
servations provides the detail structure of microbubble en-
capsulation �Christiansen et al., 1994; Myrset et al., 1996;
May et al., 2002; El-Sherif and Wheatley, 2003�. It consists
of a few nanometer thick layer of one or few molecules �Fig.
1�a��, and is therefore neither homogeneous in the thickness
direction, nor is it isotropic. The finite thickness model of the
microbubble encapsulation proposed by various authors
�Church, 1995; Morgan et al., 2000; Khismatullin and
Nadim, 2002� containing incompressible materials with ho-
mogeneous and isotropic bulk material property therefore
might not be appropriate �Evans and Skalak, 1980; Edwards
et al., 1991�. On the other hand, a molecular model is pro-
hibitively expensive and is not really necessary for describ-
ing the acoustic behavior. Chatterjee and Sarkar �2003� have
adopted a new interface model �Fig. 1�b�� for the encapsula-
tion that retains continuum character only in the in-plane
direction. The model interface is of zero thickness, and as-
sumed to have rheological properties such as interfacial ten-
sion and surface viscosity �in contrast to bulk viscosity and
elasticity for the material of existing finite-thickness encap-
sulation models�. The zero thickness assumption is justified
in view of the thinness ��nm� of the encapsulation com-

FIG. 1. �a� Schematic of a typical encapsulated bubble; R0 is the initial
bubble radius and t, the thickness of encapsulation. t�R0. Due to the pres-
ence of molecules, the layer is inhomogeneous in the thickness direction
unlike the in-plane directions. �b� The interface model with surface rheol-
ogy. The gas is modeled as a bulk medium with a uniform gas pressure Pg.
The outside liquid is also modeled as a bulk medium with density � and
viscosity �. The interface is taken to be a sharp interface of zero thickness,
and endowed with intrinsic rheological properties surface viscosity ��s� and
surface tension ���.
pared to the bubble radius ���m�. It avoids making any
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assumptions about the structure along the thickness direction
of encapsulation, but the interface rheology captures its es-
sential effects. Such an approach has been used for fluid
interfaces with adsorbed surfactants and proteins �Graham
and Phillips, 1980�, a case very similar to the present one.
The validity of any model has to be established by successful
comparison with independent experimental observations. To
date a comparative investigation into predictive capabilities
of different models has not been performed.

Applying a Newtonian viscous rheology for the inter-
face, Chatterjee and Sarkar �2003� have obtained interfacial
properties �surface tension �=0.9 N/m, surface dilatational
viscosity �s=0.08 msP� of Optison �GE Healthcare, Prince-
ton, NJ� from attenuation experiments. The model correctly
predicted experimentally observed subharmonic emission
from Optison measured by Shi et al. �1999�. However, while
one would expect the surface tension value to decrease due
to adsorption of surface active materials, �=0.9 N/m deter-
mined by matching with experiment is much higher than that
��0.07 N/m� of a pure gas–water interface. They ascribed
the large surface tension to the inadequacy of the Newtonian
model for the encapsulation rheology. In the absence of an
explicit surface elasticity term, all elastic effects were
lumped in the surface tension term. The observation warrants
introduction of a non-Newtonian viscoelastic interfacial rhe-
ology for the encapsulation.

In this paper, we develop such a viscoelastic interface
model for the encapsulation of a thin-shelled contrast mi-
crobubble. We perform an in vitro acoustic investigation of
contrast agent Sonazoid �GE Healthcare, Oslo, Norway�, and
apply both Newtonian �viscous� and viscoelastic models to
it. Sonazoid �also known as NC100100� consists of fluoro-
carbon gas microbubbles with a flexible surfactant mem-
brane. The bubble size distribution is relatively narrow with
a median diameter of 3.2 �m �Sontum et al., 1999�. Son-
azoid is a widely studied contrast agent. Recently, possibility
of inertial cavitation following Sonazoid bubble destruction
was investigated by Shi et al. �2000�. Moran et al. �2002�
investigated this agent at an intravascular imaging frequency
of 30 MHz. Here, we perform attenuation at different dilu-
tions of Sonazoid. Independently, we measure scattering at
various frequencies and amplitudes. We develop interface
models for the microbubble encapsulation using two rheolo-
gies, and obtain corresponding Rayleigh–Plesset type of
equations for bubble radius. We determine the surface pa-
rameters using the experimental attenuation data. For com-
parison, we also compute similar results for the Church’s
shell model using a formulation appropriate for a thin shell
as presented by Hoff et al. �2000� �Eq. 6 in their paper; this
model hereafter is referred to as Church–Hoff’s model�. Us-
ing the model parameters, we solve the Rayleigh–Plesset
equation to determine the scattered response of the models.
Measured fundamental and sub-harmonic scatterings are
compared with the numerical model predictions. A detailed
comparative study of the various model behaviors and their

ability to predict experimental measurement is presented.
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II. EXPERIMENTAL SETUP AND METHOD

A. Experimental setup for measuring attenuation

A pulse-echo system was employed for measuring at-
tenuation of ultrasound in a solution of contrast agent. The
block diagrams of its electronic and acoustic arrangements
are shown in Figs. 2�a� and 2�b�, respectively. A program-
mable function generator �model 8116A; Hewlett Packard,
Santa Clara, CA� produced short pulses at a pulse repetition
frequency �PRF� of 10 Hz for transmission. The transmit
signals were first amplified in a broadband 50 dB rf power
amplifier �model 325LA; ENI, Rochester, NY� �Fig. 2�a��
and then supplied to a single-element broadband flat trans-
ducer �Etalon, Lebanon, IN� through an electronic Transmit/
Receive switch �model RDX-6; Ritec, Warwick, RI� with a
double-mixer range gate �see Fig. 2�b��. The transducer had a
diameter of 12.2 mm, a center frequency of 3.6 MHz, and a
bandwidth �6 dB down from maximum� of 98%. A flat stain-
less steel plate was placed in front of the transducer as an
acoustic reflector �Fig. 2�b��. Reflected ultrasound pulses
were received by the same transducer, and the received sig-
nals were amplified with a low noise rf amplifier �model
5052 PR; Panametrics, Waltham, MA�. The amplified signals
were acquired at a sampling frequency of 50 MHz using a
digital oscilloscope equipped with mathematical functions
�model 9350AM; LeCroy, Chestnut Ridge, NY�. For each

FIG. 2. Experimental setup for measuring attenuation and scattering.
measurement, 64 sequences of 20 �s scattered signals were
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taken at the PRF of 10 Hz. An average spectrum of these 64
data sequences was then obtained using a FFT function in the
oscilloscope. The average power spectrum was transferred
via an IEEE-488 interface to a PowerPC for further analysis.
The communication with the function generator and the data
transfer from the digital oscilloscope were controlled by
LABVIEW® �National Instruments, Austin, TX�. The acoustic
attenuation of diluted Sonazoid, as a function of frequency,
was determined by subtracting the average spectrum prior to
injection of the agent from the spectrum obtained after injec-
tion. Each attenuation measurement took less than 10 s.
Similar attenuation measurement was performed by other in-
vestigators �see, e.g., Hoff et al., 2000�.

B. Experimental setup for measuring scattering

As shown in Fig. 2�c�, an acoustic arrangement with two
transducers �transmitter and receiver� was employed. All
transducers were single element spherically focused trans-
ducers with a diameter of 12.2 mm and a focal length of 2.5
cm. One transducer �R1-4025; Etalon� with a bandwidth of
86% and a center frequency of 3.6 MHz was used as the
transmitter �T in Fig. 2�c�� for insonation at frequencies of
2.0, 3.0, 4.4, and 6.0 MHz. The second transducer �C1-4035;
Etalon� with a bandwidth of 120% and a center frequency of
6.2 MHz was used as the receiver �R in Fig. 2�c��. The trans-
mit transducer was positioned confocally at right angle to the
receiving transducer. Since contrast microbubbles are much
smaller than the acoustic wavelength and undergo volume
pulsation in an ultrasound field, scattered signals received at
90° should be very similar to the backscattered echoes �Shi
et al., 2000�. The advantage of this measurement system is
its high spatial resolution. This is because scattered signals
only come from the microbubbles in the small overlapping
confocal region of the transmitting and receiving transduc-
ers.

For each measurement, ultrasound sine-wave tonebursts
with 64 cycles were transmitted at a PRF of 10 Hz. A se-
quence of 64 scattered signals, each of 50 �s duration, was
acquired using the LeCroy digital oscilloscope with a sam-
pling frequency of 50 MHz. Acquired data were transferred
via an IEEE-488 interface to a PC �Dell, Austin, TX� and
processed using a FFT spectrum analyzer with Hamming
window in LABVIEW. All spectra of scattered signals were
averaged over 64 data sequences. The transient effects are
limited only to the initial cycles, and the computed subhar-
monic response is independent of the pulse length �Shi et al.,
1999�.

All measurements were carried out at room temperature
�around 25 °C�. Isoton® II �Coulter, Miami, FL� was utilized
as the buffer for the contrast agent solution. It was kept in
circulation by a magnetic stirrer. The acoustic output of the
transmit transducer was calibrated in water using a 0.5 mm
broadband acoustic needle hydrophone �Precision Acoustics,

Dorchester, UK�.
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III. MATHEMATICAL FORMULATION

A. Interfacial rheology models for encapsulation and
encapsulated bubble dynamics

The encapsulation of a contrast agent is made of a few
layers �often a monolayer� of molecules �Fig. 1�. As men-
tioned in Sec. I, such a layer is not homogeneous in the
thickness direction and therefore neither is it isotropic. How-
ever, the encapsulation can be considered a macroscopic ho-
mogeneous continuum in the other two directions �Evans and
Skalak, 1980; Edwards et al., 1991�. Due to its much smaller
thickness compared to the bubble radius, we assume it to be
an interface of infinitesimal thickness. It is endowed with
intrinsic interface properties “that represents the effects inte-
grated over the composite molecular structure in the thick-
ness direction” �Evans and Skalak, 1980, p. 2�. Biological
membranes and fluid interfaces with adsorbed surfactants
and proteins �Evans and Skalak, 1980; Edwards et al., 1991;
Graham and Phillips, 1980� have been modeled with such an
interface. The interface gives rise to interfacial stresses that
are to be modeled by interface rheology. The rationale for
using zero-thickness interface models is stronger in case of
thin-shelled contrast microbubbles. The thickness of the en-
capsulation is 4 nm for Sonazoid microbubble, whereas its
mean diameter is 3.2 �m �Sontum et al., 1999�.

A micron size bubble in an acoustic pressure field of 1
MHz �the radius to wavelength ratio is �10−3� can be as-
sumed to retain its spherical shape as the pressure varies little
over the bubble surface. Substantial shape deformation, e.g.,
in case of microbubble breakup, is not considered in this
model. Assuming spherical symmetry, the mass and momen-
tum conservation equations in the surrounding liquid are

1

r2

�

�r
�r2vr� = 0, �1�

�� �vr

�t
+ vr

�vr

�r
� = −

�p

�r
+ �� 1

r2

�

�r
�r2�vr

�r
� −

2vr

r2 	 , �2�

where vr is the radial component of velocity, � the liquid
density, p the pressure, and � is the liquid viscosity. Note
that incompressibility is assumed for the surrounding liquid.
Effects of liquid compressibility and viscoelasticity have
been investigated by Khismtullin and Nadim �2002� by a
matched asymptotic technique and found to be small. We
also examined the effects of compressibility on the charac-
terization �see Sec. IV�. From mass conservation �1�, the
radial velocity in the liquid is readily obtained as that due to
a potential source:

vr = ṘR2/r2, �3�

where R is the radius of the bubble. Note that the velocity
being irrotational, the viscous terms vanish identically. Using
Eq. �3�, Eq. �2� can be integrated to give at r=R,

��RR̈ +
3

2
Ṙ2� = pr=R − p�, �4�

where pr=R is the pressure in the liquid immediately outside

the bubble, and p� is the liquid pressure far away:
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p� = P0 − pA�t� , �5�

P0 is the liquid hydrostatic pressure and pA�t� is the excita-
tion pressure. The dynamic boundary condition at the bubble
interface relates the pressure pr=R to the bubble dynamics.

1. Newtonian interfacial rheological model

The dynamic condition at the interface r=R can be ob-
tained by considering the force balance in a thin lamina con-
taining the segment of the interface. Similar to the flow in
the bulk, one can model the stresses at an interface by a
constitutive equation. For a Newtonian interfacial rheology,
the surface extra stress and the jump in the bulk viscous
stress across the interface arising from the force balance are
�Edwards et al., 1991, p. 109�

�s = �Is + ��s − �s��Is:Ds�Is + 2�sDs,

�6�
�� · n�surface = �s · �s,

where � is the surface tension, �s and �s are interfacial di-
latational and shear viscosities, Is and Ds are the surface
identity and surface strain rate tensors �Edwards et al., 1991�.
The center dot represents a scalar product between two
second-order tensors. The motion inside the bubble is ne-
glected, and a spatially uniform interior pressure PG�t� is
assumed. One can use the radial part of the jump condition
�6� to obtain �see Edwards et al., 1991, p. 114�

�− p + 2�
�vr

�r
�

r=R
+ PG 
 − pr=R − 4�

Ṙ

R
+ PG

=
2�

R
+

4�sṘ

R2 . �7�

For a free bubble, dilatational viscosity �s, which arises due
to the encapsulation, is zero, and � is at its clean surface
value. The surface shear viscosity does not appear due to the
spherical symmetry of the dynamics. The �dilatational� vis-
cous term can be explained by noting that the bubble under-

goes area dilation at a rate A−1dA /dt=2Ṙ /R , �A=4�R2�. It

results in a uniform tension of magnitude 2�sṘ /R in Eq. �7�,
in addition to the surface tension �. In an undisturbed con-
dition �zero motion�, using pr=R= P0 �see Eqs. �4� and �5�,
from Eq. �7� we obtain the initial gas pressure inside the
bubble:

PG0 
 PG�t = 0� = P0 +
2�

R0
, �8�

where R0 is the initial radius. Note that PG0 is not in equi-
librium with the outside pressure P0. In fact for a micron
radius, the inside bubble pressure could be significantly
higher depending on surface tension, leading to quick disso-
lution due to gas diffusion �Epstein and Plesset, 1950; Ka-
balnov et al., 1998; Chen et al., 2002�. For this model the
stability of the microbubble has to depend on the low solu-
bility of the gas in the surrounding liquid, and more impor-
tantly on the low permeability of the encapsulation, making

it an effective barrier to gas diffusion.
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With the Newtonian rheology, the encapsulation is
purely viscous characterized by � and �s. As we saw in the
case of Optison �Chatterjee and Sarkar, 2003�, and also will
see in the following, such a model for the encapsulation re-
sults in an unusually high value for surface tension. Adsorp-
tion of small amount of surface active materials leads nor-
mally to a reduction in surface tension from its value at a
clean interface. At low surface concentrations, the adsorbed
molecules behave like a perfect gas; their random motion
leads to an osmotic pressure acting against the surface ten-
sion. The surface tension reduction can be modeled by
Gibb’s adsorption isotherm that is identical to the perfect gas
law �Edwards et al., 1991, p.25�. However, in an encapsula-
tion the molecules are at a high concentration and closely
packed, with a strong attractive interaction between them,
making the “ideal gas” law invalid. Due to the attractive
interaction, any change in area will lead to an elastic force, a
phenomenon commonly known as Gibb’s elasticity �see
Evans and Skalak �1980�, pp. 80 and 86 and Edwards et al.
�1991�, pp. 118 and 172�. A Newtonian constitutive equation
assumes that the deviatoric part of stress is entirely of vis-
cous origin and has only an isotropic surface pressure term,
namely the surface tension �Kralchevsky and Nagayama,
2001, p. 158�. While fitting the experimental observation, all
elastic effects get lumped into it, generating the high value.
The resulting mechanical surface tension is significantly dif-
ferent from its thermodynamic value, and can alternately be
interpreted as an effective parameter to represent all “elastic”
effects �usual thermodynamic tension in the surface as well
as dilatational elasticity arising from fractional increase in
area over unstressed configuration� of the shell.

2. Viscoelastic interfacial rheological model

The above observation indicates the need for a vis-
coelastic rheology with explicit surface elasticities. Edwards
et al. �1991, p.118� has shown that dilatational surface elas-
ticity or Gibb’s elasticity can also be treated as effects arising
from surface tension gradients. Accordingly, the dilatational
elasticity Es is introduced as

Es = � ��

�	
�


=0
, � = �0 + Es
 , �9�

where 
=�A /A= ��R /RE�2−1� is the fractional change in
area from equilibrium that represents an unstrained equilib-
rium condition �denoted by unstrained radius RE�. �0 is the
reference surface tension at zero area change. Note that in
our Newtonian �purely viscous� approach the dynamics does
not have such a reference unstrained state. A note of caution
is warranted for the terminology. Edwards et al. �1991,
p.118� states that because dilatational elasticity can be
treated as a surface tension gradient effect, “such elastic be-
havior does not necessarily violate Newtonian model of in-
terfacial rheological behavior.” However, for clarity, we call
the model with dilatational elasticity non-Newtonian or vis-
coelastic, and the one without explicit elasticity Newtonian.
Evans and Skalak �1980, p.80� offered a similar model for
membrane surface elasticity �they called Es the area com-

pressibility modulus�. With the modification to surface ten-
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sion �, the dynamic boundary condition �7� at r=R becomes

pr=R = PG − 4�
Ṙ

R
−

4�sṘ

R2 −
2�0

R
−

2Es

R
�� R

RE
�2

− 1	 .

�10�

At the initial zero motion state, the inside pressure sat-
isfies

PG0 = P0 +
2�0

R0
+

2Es

R0
��R0

RE
�2

− 1	 . �11�

In contrast to the Newtonian rheology �see Eq. �8��, we as-
sume an equilibrium of pressure inside and outside the
bubble PG0= P0, that ensures stability of microbubbles, even
if the encapsulation is permeable to the gas. Imposing pres-
sure equilibrium, we obtain the equilibrium radius

RE = R0�1 −
�0

Es�−1/2

.

Note that the initial radius is strained �smaller than RE�. The
resulting compressive stress balances the stress due to sur-
face tension giving rise to the pressure equilibrium.

3. Encapsulated bubble dynamics

The gas pressure inside the bubble is assumed to vary
with bubble volume polytropically with k as the polytropic
exponent as follows �Leighton, 1994, p.11�:

PGR3k = PG0R0
3k. �12�

PG0 is the gas pressure and R0 is the initial radius. We have
chosen k=1, corresponding to an isothermal gas behavior
inside the bubble; the bubble size is too small compared to
the thermal diffusion length in the time scale ��10−6 s� of
oscillation �Hilgenfeldt et al., 1998�. Models of heat trans-
fer inside bubbles due to Devin �1959� and Eller �1970�
indicate k to be close to unity ��1.006; see Hoff et al.
�2000�, their Eq. �21a��. For the liquid–gas system, using
Eqs. �5� and �10� in Eq. �4� we obtain the modified
Rayleigh–Plesset equation

��RR̈ +
3

2
Ṙ2� = PG0�R0

R
�3k

− 4�
Ṙ

R
−

4�sṘ

R2 −
2�0

R

−
2Es

R
�� R

RE
�2

− 1	 − P0 + pA�t� �13�

for the viscoelastic interfacial rheology. Replacing Eq. �10�
by Eq. �7�, we obtain a similar equation for the Newtonian
rheology:

��RR̈ +
3

2
Ṙ2� = PG0�R0

R
�3k

− 4�
Ṙ

R
−

4�sṘ

R2

−
2�

R
− P0 + pA�t� , �14�

where the dilatational elasticity term is absent �Es=0�, and
the surface tension term involves � instead of �0. Equation

�13� or �14� together with the initial conditions R(t=0)=R0,
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and Ṙ�t=0�=0 describes the bubble dynamics. We conclude
that �� ,�s� characterize a Newtonian rheology and
��0 ,Es ,�s� a viscoelastic rheology for the encapsulation. The
second order differential equation �13� or �14� is solved us-
ing a stiff solver routine of MATLAB® �Mathwork Inc, Nat-
ick, MA�.

The acoustic pressure Ps(t) scattered by a bubble is
�Brennen 1995, p. 83� with the assumption of incompress-
ibility for the surrounding liquid:

Ps�r,t� = �
R

r
�2Ṙ2 + RR̈� . �15�

The corresponding scattering cross section is given by

�s�t� =
�r2Ps�t�2�

PA
2 , �16�

where the angular brackets indicate an average over a time
period. Different frequency components, e.g., harmonic or
subharmonic, of the scattered signal are determined by trans-
forming the expression into frequency domain.

B. Determination of interfacial rheological parameters

The encapsulation models have unknown parameters,
such as interfacial tension � �or �0�, dilatational viscosity �s,
or dilatational elasticity Es, as evident from bubble dynamics
equations �13� or �14�. Interfacial tension differs from its
value for a pure gas–liquid interface by the presence of sur-
factants. The model parameters are phenomenological in na-
ture, and must be determined experimentally. A linearized
equation of motion is applied for determination purposes, by
restricting the attenuation experiments to small amplitude os-
cillations �i.e., low excitation�. The measured attenuation and
scattering are integrated effects of a bubble distribution, and
are difficult choices for obtaining individual bubble charac-
teristics. Such inverse processes of parameter estimation are
notorious for their ill-posed nature. We found that the linear-
ization provides an easy and robust algorithm for the param-
eter determination. We also assume that the material param-
eters in a proper physical model are independent of the type
of experiments, i.e., attenuation or scattering, and remain
constant over a range of excitation frequency and ampli-
tudes. The medical imaging is restricted to a range of fre-
quency ��1–10 MHz�, and one is justified in assuming rea-
sonably constant properties in this frequency range.
However, interface properties could vary significantly with
excitation amplitudes �see Sec IV�.

We assume a harmonic excitation pA�t�= PA sin�
t�,
where 
=2�f with f being the driving frequency, and PA the
acoustic pressure amplitude. For small oscillation R=R0+X,
one can linearize Eq. �13� or �14� in X to obtain a damped
simple harmonic oscillator:

Ẍ +
Ẋ

�R0
2�4� +

4�s

R0
� +

X

�R0
2�3kP0 −

4�0

R0
+

4Es

R0
� =

PA

�R0
sin 
t ,

�17�
or
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Ẍ +
Ẋ

�R0
2�4� +

4�s

R0
� +

X

�R0
2�3kP0 +

2�

R0
�3k − 1�	

=
PA

�R0
sin 
t , �18�

respectively, for viscoelastic and Newtonian models. The
corresponding resonance frequencies are


0
2 =

1

�R0
2�3kP0 −

4�0

R0
+

4Es

R0
� ,

�19�


0
2 =

1

�R0
2�3kP0 +

2�

R0
�3k − 1�	 .

Note that the expression for resonance frequency in case
of Newtonian rheology is the same as that of a free bubble
�see Leighton, 1994, p. 183�. The damping term is the same
for both models and has an additional interface term com-
pared to the free bubble case �Hoff et al., 2000; Medwin,
1977�:

�total = �liquid + �interface + �radiation, �liquid =
4�

�
0R0
2 ,

�20�

�interface =
4�s

�
0R0
3 , �radiation =


2R0


0c
.

Note that we have assumed the surrounding liquid to be in-
compressible, and thereby do not obtain the radiation damp-
ing terms in Eq. �17� or �18�. However, including it by the
standard prescription �20� does not change the parameter val-
ues significantly. The extinction cross section �e

(l) for the
linearized dynamics is

�e
�l� = 4�R0

2c�total


0R0

�2

��1 − �2�2 + �2�total
2 �

, �21�

where �=
 /
0 and c is the sound speed in surrounding
liquid �see, e.g., Sarkar and Prosperetti �1994��.

The power absorbed and scattered by microbubbles in
frequency domain leads to attenuation 	�
� in dB/distance

	�
� = 10 log10e

amin

amax

�e�a;
�n�a�da , �22�

where e is the base of natural logarithm, n(a)da is the num-
ber of bubbles per unit volume with radius in �a ,a+da�, and
amax�min� is the maximum �minimum� value of the range of
bubble radii. For the case of N bubbles per unit volume of
a uniform size the integral simplifies to N�e. Sonazoid has
a relatively narrow size distribution with an average diam-
eter of 3.2 �m and number concentration of 0.78
�109/ml �Sontum et al. �1999�, see also Hoff �2000��.
Notice that 	�
� is a function of the unknown bubble
parameters �� ,�s� or ��0 ,Es ,�s�. The experimental mea-
surement of attenuation over a range of frequencies
	meas�
� is used to define an error Er(� ,�s) or

s s
Er(�0 ,E ,� ):
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Er��,�s,…� = �
i

�	�
i� − 	meas�
i��2. �23�

The error is minimized to obtain the bubble parameters.
MATLAB was used to execute the error minimization. The
uncertainty in the estimated parameters is determined by
finding the range for which the error residual reaches its
minimum value. Similar method is used by previous authors
for obtaining model parameters �e.g., Chatterjee and Sarkar,
2003; Hoff et al., 2000�.

C. Liquid compressibility and bubble breakup

We have neglected liquid compressibility in our model
as did several other research groups �Church, 1995; de Jong
et al., 1992; de Jong and Hoff, 1993�. To investigate the
compressibility effect, we implemented a Keller–Herring
type model to find that the model parameters do not vary
substantially �see Sec. IV�. For brevity, we omitted here a
detailed description of the compressible model. Khismatullin
and Nadim �2002� have also found that the compressibility
and viscoelasticity of the surrounding liquid do not play sig-
nificant role in the bubble dynamics. Prosperetti �1984� has
discussed the suitability of different models of bubble dy-
namics in case of free bubbles. He has shown that for low
Mach Numbers �based on bubble wall velocity� all models
with and without compressibility work equally well. Contrast
microbubbles are much stiffer compared to a free bubble of
the same size, thereby significantly restricting bubble wall
motion except at violent collapse. Sboros et al. �2002� have
observed that at higher amplitudes of excitation incompress-
ible Rayleigh–Plesset model does not perform well �see Sec
IV�. After determining the properties of Sonazoid, our nu-
merical computation shows that the highest Mach number
attained is less than 0.3, except for rare extreme cases, fur-
ther justifying the assumption of incompressibility. The en-
capsulation of a contrast microbubble may rupture at high
acoustic pressure amplitude, an effect not accounted for in
our model.

IV. RESULTS AND DISCUSSION

A. Attenuation measurement and characterization

As was mentioned before, we take Sonazoid as a test
case of available ultrasound contrast agent. Attenuation mea-
surement for varying concentration of Sonazoid is shown in
Fig. 3�a�. The peak attenuation plotted against concentration
in Fig. 3�b� displays a linear increase indicating that indi-
vidual contributions of bubbles are additive, and interactions
between them negligible �the void fraction of microbubbles
is �10−6, which is too small for interaction, Commander and
Prosperetti �1989��. The method outlined in Sec. III B was
used to determine interfacial properties for Sonazoid based
on the experimental data �for the highest attenuation� of
Fig. 3.

Figure 4 shows the Newtonian and viscoelastic models
fitted to the experimentally measured attenuation. In the
same figure, we also present the curve fit for the Church–
Hoff model �Hoff et al. �2000�; Eq. �6� in their paper� that

assumes a 4-nm-thick layer of rubbery incompressible mate-
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rial. The encapsulation material in this model is character-
ized by a bulk shear modulus Gs, and a shear viscosity �s.
The parameters determined for each model are presented in
Table I. For the viscoelastic model, uncertainty range in �0 is
not provided, because its variation leads to little change in
the residual. Introducing compressibility in the Newtonian

FIG. 3. �a� Attenuation at different concentrations of Sonazoid with one-
cycle 5 MHz insonation. The experiments were conducted around 2 min
after injections of 0.103, 0.080, 0.063, 0.046, 0.031, 0.017, 0.010 ml/ l of
Sonazoid in Isoton II �from top to bottom�. �b� Variation of peak attenuation
with concentration showing the linearity of attenuation with concentration.

FIG. 4. Determination of the interface �Newtonian and viscoelastic models�
and shell �in case of Church–Hoff’s model� parameters corresponding to
Sonazoid bubbles. Data correspond to a concentration of 0.103 ml/ l of Son-

azoid in Isoton-II.
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model resulted in �s=0.012 msP and �=0.54 N/m, not sub-
stantially different from their incompressible counterparts. It
may be noted that the values obtained for Church–Hoff
model are close to those obtained by Hoff �2000�.

The values of �s are similar to those obtained for other
surfactant-laden interfaces �see e.g., Edwards et al. �1991�, p.
241�. However, � for the Newtonian model is an order of
magnitude higher than that at the gas–water interface �at an
air–water interface �=0.072 N/m�, a result very similar to
what we obtained for contrast agent Optison �Chatterjee and
Sarkar, 2003�. As explained in Sec. III, the high value is a
result of the Newtonian model with no explicit elastic term.
The elastic contributions are all lumped into the surface ten-
sion. The interfacial parameters obtained with the viscoelas-
tic interfacial rheology �containing an explicit dilatational
elasticity term� substantiates this explanation. With this
model we get �0=0.019 N/m, a value lower than that at the
air–water interface. Note that the surface dilatational viscos-
ity �s remains the same in these two interface models, as it
should if the property represents a physical nature of the
encapsulation and not just a mathematical fitting constant.
Also surface tension � in the Newtonian model is indeed a
combination of surface tension and dilatational elasticity of
the viscoelastic model—�viscous���0+Es�viscoelastic. Param-
eters for three different models are obtained by fitting their
linearized versions with the experimentally observed attenu-
ation. In the following, we provide a detailed comparative
study of these model behaviors and their ability to predict
measurements from a different experiment, viz. scattering.

B. Experimental measurements of scattered
fundamental and subharmonic emissions

We measure scattering of ultrasound through solution of
Sonazoid at different driving frequencies and pressure ampli-
tudes, and investigate fundamental �Fig. 5�a�� and subhar-
monic �Fig. 5�b�� scattered responses. The fundamental re-
sponse increases linearly with exciting acoustic pressure for
lower pressures, but saturates at higher pressures �e.g., above
0.6 MPa for 2 MHz insonation�. Furthermore, it decreases
with increasing excitation frequency. The saturation in fun-
damental response is due to the nonlinear energy transfer
into other frequencies at higher excitations, as well as pos-
sible breakup.

Figure 5�b� shows that a subharmonic response roughly
has three different regimes with increasing pressure
amplitudes—initial slow increase, rapid growth, and satura-
tion. It may be pointed out that similar trends were also
observed in the case of Optison �Shi et al., 1999�. During
initiation, the subharmonic component is insignificant �near

TABLE I. Values of parameters estimated for Sonazoid using three differen

Newtonian model Ch

�s�msP=10−6 Ns/m� ��N/m� Gs�M

Mean 0.01 0.6 52
Range �about mean� ±0.0038 ±0.14 ±1
the noise level, e.g., for pressures less than 0.3 MPa at 6
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MHz insonation�. During growth, the subharmonic response
increases rapidly with the acoustic pressure, and usually has
amplitudes much above the background noise. As the acous-
tic pressure increases further �e.g., 0.8 MPa for 6 MHz in-
sonation�, the growth of the subharmonic component satu-
rates. At this stage, the variation in the data is substantially
high possibly indicating chaotic response due to inertial cavi-
tation �Shi et al., 1999; also see Prosperetti, 1975; Apfel and
Holland, 1991� Note that the first two regimes roughly coin-
cide with the linear growth of the fundamental response in
Fig. 5�a�. For higher frequencies, the initiation of growth is

dels.

Hoff model Constant elasticity model

�s�Pa s� �s�msP=10−6 Ns/m� �0�N/m� Es�N/m�

0.99 0.01 0.019 0.51
±0.3 ±0.0038 … ±0.11

FIG. 5. Scattered fundamental �a� and subharmonic �b� response of Son-
azoid vs transmitted acoustic pressure amplitudes at different insonication
frequencies. Averaged values of four data sets were used for 2.0 MHz in-
sonication and averaged values of eight data sets were used for 3.0, 4.4, and
t mo

urch–

Pa�

0

6.0 MHz insonication.

ar et al.: Characterizing Ultrasound Contrast Agents by experiments



progressively delayed, and the subharmonic response is de-
creased. In case of a free bubble, a similar sharp initiation is
observed for subharmonic response in contrast to superhar-
monic responses, which show continuous and gradual in-
crease with pressure amplitudes �Eller and Flynn, 1969�. Me-
chanical index MI= PA / f1/2 �PA, the pressure amplitude
measured in MPa and frequency �f� in MHz� is often used as
a criterion for cavitation �Apfel and Holland, 1991�. On the
other hand detectable subharmonic response has been sug-
gested as an experimental signature of cavitation �Prosper-
etti, 1975�. Note that MI is a rough estimate of the energy of
the excitation as well. One would therefore expect the sub-
harmonic response to correlate with MI. In Fig. 6�a�, we plot
the subharmonic response for different frequencies as a func-
tion of MI. Such a rescaling of pressure with f1/2 shows a
collapse of the data for different frequencies at least in the
rapid growth region �Fig. 6�a��. However, the scaling is poor
in the saturation region.

C. Model predictions and comparison of fundamental
and subharmonic scattering

We use Rayleigh–Plesset equation �13� or �14� with

FIG. 6. �a� Subharmonic response against MI. �a� Experimental data �as p
Church–Hoff model, and �d� with viscoelastic model.
model parameters determined by the procedure described in
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Sec. III B to simulate microbubble dynamics. The far-field
scattering is computed from the time evolution of bubble
radius using Eq. �16� followed by extraction of fundamental
and subharmonic responses using FFT. They are compared to
experimental observations. The simulation is scaled to match
the experimental data for the lowest pressure level. Note that
the model parameters were determined using attenuation
with a linearized equation valid only for small oscillations.
The underlying assumption is that the determined material
properties retain their validity for different types of experi-
ments �scattering or attenuation�, and also remain constant in
a range of magnitude of oscillation �they may change for
large oscillation leading to, e.g., shear rate dependent inter-
face viscosity/elasticity and interfacial tension�.

In Figs. 6�b�, 6�c�, and 6�d� we plot the scattered sub-
harmonic response with MI predicted by the Newtonian,
Church–Hoff, and viscoelastic models. We find that the New-
tonian model performs the best among three in capturing the
observed collapse in Fig. 6�a� of subharmonic response for
different frequencies. Next we perform a detailed compari-
son between observed scatterings at different frequencies and
corresponding predictions of the three models—Fig. 7 for

ted in Fig. 5�b��, �b� simulation with Newtonian viscous model, �c� with
resen
fundamental and Fig. 8 for subharmonic emissions. All mod-

l.: Characterizing Ultrasound Contrast Agents by experiments 547



els show fundamental response increasing with the acoustic
pressure in keeping with the experiment. The Newtonian and
the Church–Hoff models perform marginally better than the
viscoelastic one. For the subharmonic data �Fig. 8�, the New-
tonian model provides the best match with experiment ex-
cept at the highest frequency, 6 MHz, where Church–Hoff
model predicts better than the other two. For all frequencies,
the viscoelastic model predicts much less scattering than has
been observed. Note that all models are fitted with a linear
analysis and with a low amplitude attenuation data. The rela-
tive failure of the viscoelastic model at higher excitation
might result from a very stiff encapsulation with a large sur-
face dilatational elasticity. However, at higher excitations
when bubble experiences larger excursion of the bubble sur-
face, the encapsulation might “soften” with a far lower value
of surface dilatational elasticity, not included in the model.
One could incorporate a softening in the elasticity �by as-
suming, e.g., a nonlinear dilatational elasticity� to account
for that. Note that the Newtonian model even with a high
surface tension term �dilatational elasticity and interfacial
tension lumped into one� predicts subharmonic response very
well. The bubble dynamics with Newtonian �14� and vis-

FIG. 7. Predicted and measured first harmonic response for Sonazoid at vari
coelastic �13� rheologies are remarkably similar, except for
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the elastic terms �surface tension and surface dilatational
elasticity�; they are matched and thereby produce the same
results at small excitations. However, at higher excitations
the Newtonian model �14� is far less stiff than the other one.
Figures 6–8 show that all models display fine structures for
some frequency values in their predictions especially for
stronger excitations absent in their experimental counter-
parts. The structures are signatures of “near-chaotic” re-
sponse in the bubble dynamics equations. Note that for
strong excitations, the bubbles experience nonspherical oscil-
lations, inertial cavitation, and possible breakup not included
in any of the models considered here.

V. SUMMARY

We have presented a procedure to characterize encapsu-
lated microbubble based ultrasound contrast agent through
controlled in vitro attenuation and scattering experiments and
analytical models. We applied it to contrast agent Sonazoid
�GE Healthcare; Oslo, Norway� using three models for the
bubble encapsulation. We have developed zero-thickness in-
terface models with their intrinsic interfacial rheology. Here

nsonation frequencies: �a� 2 MHz, �b� 3 MHz, �c� 4.4 MHz, and �d� 6 MHz.
ous i
we presented two different rheological models-�1� Newton-
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ian �surface tension �, dilatational surface viscosity �s� and
�2� viscoelastic �surface tension �0, surface dilatational vis-
cosity �s, and surface dilatational elasticity Es�. The rheo-
logical properties for the models were determined by com-
paring predictions of a linearized dynamics with attenuation
measured at small excitations. The characteristic rheological
properties for Sonazoid were �=0.6 N/m, �s=0.01 msP�
=10−6 Ns/m� for the Newtonian model. The abnormally high
value of the interfacial tension motivated our viscoelastic
model. The viscoelastic model results in �s=0.01 msP, �0

=0.0190 N/m, a value indeed much lower than that �
�0.07 N/m� at the air–water interface, and Es=0.51 N/m.
The value of dilatational viscosity remains the same for both
models. For comparison, we also implemented a model due
to Church �Church, 1995; Hoff et al., 2000� that assumes a
layer of finite thickness �4 nm� containing rubbery incom-
pressible material for the encapsulation. It is characterized by
bulk material properties �shear modulus Gs, and shear vis-
cosity �s�. For Sonazoid properties are Gs=52 MPa and �s

=0.99 Pa s.
We measured scattered fundamental and subharmonic

responses from a Sonazoid solution at different frequencies
and amplitudes of excitation, and compared them with pre-

FIG. 8. Predicted and measured subharmonic response for Sonazoid at vario
dictions of the three models considered. For all frequencies,
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the fundamental response grows linearly for small values of
excitations before slowing down at higher values, a feature
matched well by all three models. The measured subhar-
monic emission displayed rapid growth beyond a critical
pressure amplitude. The growth region of subharmonic emis-
sion scales with PA / f1/2, i.e., the mechanical index �MI�. The
resulting collapse of subharmonic response with MI for vari-
ous frequencies is captured well only by the Newtonian
model. The performance of the Newtonian model is better
than the other two in matching the subharmonic response for
most frequencies. The viscoelastic model consistently under-
predicted the subharmonic response at all frequencies. We
surmise that the high value of surface dilatational elasticity
determined using the linear analysis of the low amplitude
attenuation data has made a stiff encapsulation resulting in a
lower response at higher excitation. A “softening” of the en-
capsulation by assuming a surface dilatational elasticity con-
stant that decreases with fractional area increase can be a
possible remedy. The comparative investigation delineates
predictive capability of the three models for experimental
responses that are different from those used to obtain the
parameters. Further model development and their applica-
tions to other contrast agents will be the subject of future

sonation frequencies: �a� 2 MHz, �b� 3 MHz, �c� 4.4 MHz, and �d� 6 MHz.
us in
work.
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