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Abstract-This paper presents applications of boundary element methods to electrical impe- 
dance tomography. An algorithm for imaging the interior of a domain that consists of regions of 
constant conductivity is developed, that makes use of a simpler parametrization of the shapes of 
the regions to achieve efficiency. Numerical results from tests of this algorithm on synthetic data 
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1. INTRODUCTION 

In electrical impedance tomography (EIT) the distri- 
bution of impedances inside an object (‘image’) is 
sought by applying specified currents at some elec- 
trodes, and performing measurements of the voltage 
at other electrodes. The equations for the electric field 
then provide a relationship between the impedance 
distribution inside the medium and the measured 
voltages and applied currents. Different kinds of ma- 
terials have different impedances, and the availability 
of an impedance map provides an image of the mater- 
ial distribution. EIT provides an exciting possibility 
for low-cost imaging, as it uses relatively inexpensive 
electricity sources for the probing in contrast to the 
other imaging techniques that rely on nuclear or X- 
ray radiation or difficult to construct magnetic ele- 
ments. Since the mid-1980s EIT has seen intense 
research efforts to develop it into a useful technique 
for medical and process imaging, and significant pro- 
gress has been made on the modeling, implementation 
and use of the technique (Holder, 1993, Quint0 et a/., 
1994). 

Impedance tomography techniques are indirect, in 
that the image must be deduced from measurements 
of some quantities which must then be transformed 
and interpreted to obtain the required image. Achiev- 
ing this image requires the solution of a non-linear 
inverse problem, which can only be solved by using 
iterative techniques. The iterative algorithm for recon- 
struction as implemented in our study is summarized 
as follows: 

1. Assume a conductivity distribution. 

*Corresponding author. 

Using this distribution, and the applied cur- 
rents, predict the voltage at the measure- 
ment electrodes. This is called the forward 
problem. 
Compare the predicted voltages with the meas- 
ured values, and determine the error between the 
measurement and the prediction. 
Stop if the error is below a specified toler- 
ance. Otherwise generate a new guess of the 
conductivity distribution using an error min- 
imization procedure, and repeat the iterative 
steps. 

This is illustrated in Fig. 1. The inverse problem is 
known to be ill-posed (e.g. see Somersalo et al., 1992). 
As a consequence, the reconstruction procedure is 
sensitive to external noise and unless the reconstruc- 
tion procedure regularizes the solution one can get 
images of poor quality. Further, classical schemes 
based on the finite element method (FEM) are 
often very time consuming, and require extensive 
computational resources. This is especially so for 
three-dimensional problems where these requirements 
can make them time-consuming from an operational 
viewpoint. 

This has led to the wide use of backprojection 
methods to obtain the image (Barber and Brown, 
1984), which are based on the idea that the sought 
image is a perturbation of a known configuration. 
However, the backprojection methods are restricted 
to particular geometries, often provide only qualitat- 
ive images, and become quite inaccurate when there 
are large variations of the conductivity in the domain 
being imaged (Yorkey, 1987; Santosa and Vogelius, 
1990). 
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Fig. 1. Notations and operational concept of an EIT experiment. 

1.1. Approach 
Even though our approach applies to the general 

problem (Duraiswami et al., 1995, 1996) in this paper 
we restrict ourselves to the problem where the domain 
to be imaged consists of regions of vanishing conduct- 
ivity embedded in a domain of constant conductivity. 
Such problems arise quite often in practice (e.g. imag- 
ing gas bubbles in a host liquid or imaging cracks in 
a conducting material). The goal of the tomography in 
this case is to determine the shape of the interface of 
the embedded regions. In ongoing work we are inves- 
tigating solution of more general tomography prob- 
lems using dual reciprocity BEM techniques. 

1.1.1. Forward problem. Previous investigators 
have used the finite-element method (FEM) for solv- 
ing the forward problem. The FEM technique re- 
quires discretization of the whole domain into ele- 
ments, with which are associated unknown values of 
electric potential. Accuracy requires that a large num- 
ber of elements/variables be used for the discretiz- 
ation. For complex distribution of materials or in 
three-dimensional problems, a very large number of 
unknowns is therefore required, and the solution of 
the forward problem becomes computationally inten- 
sive. To increase the efficiency of the solution of the 
forward problem we employed boundary element 
methods (BEM). 

These methods convert the field equations to inte- 
gral equations posed on the boundary of the domain, 
and effectively reduce the dimension of the numerical 
problem. Only the boundaries of the domain need to 
be discretized, resulting in a considerable reduction 

in the number of variables required for accurate 
solution. The task of meshing the domain is also 
simplified. 

1.1.2. Inverse problem. The solution of the inverse 
problem, requires ‘parameterization’ of the impe- 
dance, i.e. the distribution of impedance must be 
represented in terms of a set of parameters. Specifica- 
tion of these parameters determines the impedance 
shape distribution. The solution of the inverse prob- 
lem then consists of determining these parameters. 
Typically, in FEM-based approaches, a simple para- 
meterization related to the discretization is used, and 
the conductivity is treated as unknown on each ele- 
ment. This results in a huge minimization problem. 
Further, new estimates of the conductivity at each 
iteration require the complete evaluation of the FEM 
matrices each time the forward problem is to be sol- 
ved. These factors make the solution of the inverse 
problem computationally intensive. To reduce the size 
of the inverse problem we use simpler parameteriz- 
ations of the unknown conductivities that utilize 
available a priori knowledge about the problem. 

2. GOVERNING EQUATIONS 

Let us consider an electrical impedance tomo- 
graphy problem where we know the current at the 
whole outside boundary of the domain, and the volt- 
age at selected points on the boundary. We have 
NE different current patterns applied using M differ- 
ent electrodes. The current flowing out of the domain 
in between the electrodes is taken to be zero. The 
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electrical potential at the electrodes is also available. 
Our objective is to obtain Q, the distribution of con- 
ductivity in the material. 

The electric potential, 4, satisfies the following 
equation where n is the boundary normal: 

V.(aV$) =0 in Q (1) 

a4 
an 

and 4 known at the electrodes 

subject to 
84 an =0 on the rest of the boundary. 

(2) 

2.1. Simplijed equations for constant conductivity re- 
gions 

Often the sample to be imaged consists of regions of 
almost constant conductivity, ul, embedded in a con- 
tinuous phase of another almost constant conductiv- 
ity, aZ (e.g. spatial phase distribution: solid, liquid, or 
gas). In this case, the goal of the imaging is to deter- 
mine the shape of the interfaces Sin,. Since the con- 
ductivity is practically constant within each of the 
materials, the field equation reduces to 

V’&=O inn, i=l,2. (3) 

The boundary conditions at the outer surface are 
given by eq. (2). We must, however, add the conditions 
of continuity of the potential and flux at the unknown 
interface(s) Sint, 

In these problems, the forward problem consists of the 
solution of the Laplace equation in each medium, the 
solutions being coupled by boundary conditions of 
the form (4). 

An additional important simplification arises if the 
interfaces to be imaged enclose materials of vanishing 
conductivity. Such situations are common in practice, 
e.g. in determining the distribution of air bubbles in 
a liquid, or cracks in a structure. In this special case, 
the boundary conditions (4) simplify to 

%=O on S 
an I”, . 

It is important to mention that these interface de- 
termination problems are ones that traditional FEM- 
based EIT methods find very difficult to solve since 
FEM does not explicitly treat the unknown interface, 
but accounts for it as a region of strong variation of 
the conductivity. 

3. NUMERICAL FORMULATION 

3.1. Forward problem solution using BEM techniques 
Being able to solve an EIT problem using the BEM 

would have the invaluable advantage of considerably 
reducing computational time. Indeed, by requiring 
discretization of only the boundary, the BEM reduces 
the dimension of the problem by one, and leads to 

orders of magnitude reduction in memory and CPU 
time requirements. 

Let us denote the fundamental solution to La- 
place’s equation by G, so that 

V’G(x, y) = 
2&(x - y) in 2-D 
4718(x - y) in 3-D 

where G = loglx - YI in 2-D 
-Ix-yI_’ in 3-D. (6) 

Equations (1) and (3) can all be reformulated via 
Green’s identity: 

add4 = V2#W% y) dV + s ny. Cddy)VW, Y) 
S 

- G(x> Y)V~(Y)I dS (7) 

where an is the angle in two-dimensions (solid angle in 
three-dimensions) under which the point x sees the 
rest of the domain. For formulations with smooth 
boundaries we have 

a= i 

2, XEQ in 2-D 1, XE S in 2-D 
4, XEQ in 3-D a = 1 2, XE S in 3-D 

where R is the domain, and S its boundary. 
When we restrict ourselves to problems with inter- 

nal regions of vanishing conductivity, the volume inte- 
gral in eq. (7) vanishes. The surface integrals can then 
be performed by suitably discretizing the boundaries. 
In two-dimensions, we accomplish this by fitting cubic 
splines through known points on the boundary, while 
in three-dimension, we use plane triangular discretiz- 
ations of the boundary. This enables us to write 
Green’s identity in the form 

a7+(x) = c 
SC k=l Sk 

44~) g (x, Y) - (3x3 Y) 
Y 

a4 
X&Y) d& 

Y > 

Over each subdomain Sk, a linear Lagrangian inter- 
polation of $J and &#@n is performed using the values 
at the nodes (spline-knots in two-dimensions, triangle 
vertices in three-dimensions). The resultant boundary 
integrals can then be performed, leading to a discrete 
relation between the values of 4 at points x, and the 
values of 4 and ah/an on the boundary nodes. Fol- 
lowing a collocation approach, by selecting the points 
x to be the nodes on S, a linear system of equations of 
the form 

Ag=Bc+4 (9) 

results. Here, A and B are matrices corresponding 
to the discretization and integration with Green’s 
function and its derivative. On accounting for bound- 
ary conditions at the collocation points, one ob- 
tains a closed system of equations, which leads to 
4 and &##n at the boundary. Knowing these quantit- 
ies, eq. (7) can be used to obtain 4 at any other 
point x. 
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The process of discretization, evaluation of the nor- 
mals, performance of integrations (including special 
cases that are singular when the collocation node lies 
in the interval of integration) is an involved process, 
and details may be found in Chahine and Perdue 
(1989) and Chahine and Duraiswami (1992, 1994). 

3.2. The inverse problem 
3.2.1. Decoupled parameterization. In our ap- 

proach, we have decoupled the parameterization of 
the unknown conductivity or surface location from 
the forward problem discretization. This leads to 
a significant reduction of the number of parameters in 
the inverse problem, through use of a priori informa- 
tion about the physical problem at hand. This has also 
the advantage of mitigating the ill-posed character of 
the problem. 

3.2.1.1. Parametrizations chosen for this study 
For preliminary testing of our codes we chose the 

standard two-dimensional problems of identifying 
a cylindrical object inside a cylindrical container, on 
the boundary of which electric measurements are 
taken. In this case we parameterized the inner circle 
by the location of its center, and by its radius (three 
parameters). The codes were then tested for multiple 
circles in the inner domain. We then considered single 
and multiple regions of arbitrary shapes that are each 
described by a series of Legendre polynomials 

f(r, f?) = i r,P,(cos 0) 
k=O 

where in addition to N Legendre parameters, the 
direction to measure the angle 0 and the origin of 
coordinates of the shape, lead to a total of N +3 
parameters. For the three-dimensional codes we con- 
sidered as a test problem a spherical container with 
internal regions consisting of single or multiple 
spheres of vanishing conductivity. The choice of circu- 
lar and spherical container is purely for convenience 
of the setup of the problem, and the codes in their 
present form are written for any user prescribed shape 
of the boundary. 

3.2.2. Objective function for minimization. The 
quantity to be imaged, here the shape of the regions of 
zero conductivity, are described through a para- 
meterization by P quantities, arranged in the vector P. 
To formulate an error function for minimization, we 
consider Nr different experiments, where in each ex- 
periment the pattern of current application to the 
electrodes is varied. The correct solution to the prob- 
lem, 4rk), satisfies the following boundary conditions 
at the M electrodes for k = 1, , NE: 

ap 
ax=9 (k) on S 

and 
4(k) = J(k) on E,; 1 =l, . , M (11) 

where the superscript k refers to a given experiment, 

El to electrode 1, 4(k) refers to the measurements avail- 
able at the electrodes. 

The numerical solution of the forward problem, 
4 (k’, obtained by using the boundary conditions on 
the current provides us with a predicted value of the 
potential, I$ at the electrodes 

r#~(~) = @’ on Ei, 1 = 1, . . . , M. (12) 

We can accordingly form M x NE measures of the 
error, e, 

ei = $1”) _ Jr’, i=l , . . . , MN,. (13) 

We seek the values of p that minimize the above 
vector of errors. The classical technique for minimiz- 
ing an array of objectives is to use a least-squares 
approach, which reduces them to a single objective 
function. The least-squares objective function can be 
formulated as 

X2 = C C3i - 6i(P)12. 
i=l 

04) 

3.2.3. Optimization of codes. In a BEM formulation 
for a problem involving an unknown boundaryiinter- 
face, some of the matrix entries are obtained as inte- 
grals over the unknown interface. The BEM formula- 
tion leads to a system of equations, where several of 
the matrix entries depend on the guessed configura- 
tion of the unknown interface. In this case, eq. (9) can 
be partitioned as 

(15) 

where p is a parameterization of the unknown internal 
boundaries; index 1 is associated with known bound- 
aries and index 2 with unknown boundaries. 

Because of the zero boundary condition on &p/an 
on the internal boundaries, eq. (15) shows that it is not 
necessary to compute the matrices Ai2 and Az2. Fur- 
ther since the matrices Ali and BI1 are associated 
with the outer boundary, and depend only on its 
discretization, they need to be computed only once for 
a given geometry. This enables achievement of signifi- 
cant savings in the solution of the inverse problem. 
Most of the computational work that is required for 
the solution can be performed at the outset, and 
subsequent solutions of the forward problem are per- 
formed using much fewer operations. Since the 
minimization procedure requires solution of many 
forward problems with different values of the para- 
meters, this approach results in significant speed up of 
the minimization. 

3.2.4. Choice of minimization technique. Several ap- 
proaches are available to minimize the quantity x2 in 
eq. (14). For problems where the error is a smooth 
function of the parameters, approaches that use deriv- 
ative information to perform the minimization, can 
reach the solution much faster than those that do not. 
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However, they require a priori computation of the 
Jacobian. Quite often the exact Jacobian cannot be 
obtained analytically and an approximate Jacobian is 
computed by a suitable linearization process. In this 
case, the obtained Jacobian is only useful in the neigh- 
bourhood of the solution. Alternatively, one can use 
a numerical approach to compute the Jacobian by 
using a finite-difference approach. 

For analytically computing the Jacobian a direct 
relationship between the measured values of the po- 
tential on the known boundaries, 4r, as a function of 
the parameters p. Since, the elements of the matrices in 
eq. (15) are a function of the vector of parameters p, an 
explicit expression for the derivatives of the error 
function (Jacobian) is not readily available. In this 
case the Jacobians will require evaluation of tensors of 
third order, and is likely to prove numerically expen- 
sive. Accordingly, we have chosen in our numerical 
implementation to date minimization schemes that do 
not need analytically computed Jacobians. Three 
minimization algorithms that do not require analyti- 
cal knowledge of the Jacobian, from Press et al. (1992), 
were accordingly chosen for testing. 

The first was Nelder and Mead’s downhill simplex 
method. In this method, an initial ‘simplex’ is formed 
by N + 1 guesses, where N is the dimension of the 
minimization problem. Then, using the magnitude of 
the errors evaluated at the vertices of the simplex, the 
simplex is subjected to a sequence of stretching, reflec- 
tion and contraction operations, to reduce the error at 
these vertices. These operations ensure that as the 
algorithm converges, the simplex brackets a minimum 
of the objective function. 

The second method was Powell’s direction set 
method. In this method, an initial guess and a set of 
N independent search directions are provided to the 
program. In each iteration, the method serially per- 
forms a sequence of line-minimizations along the di- 
rections. At the end of each iteration, the method 
replaces one of the original directions with the line 
joining the starting and ending points. Care is taken 
to ensure that the directions remain linearly indepen- 
dent. 

The third method tested was the conjugate gradient 
method. The Jacobian was computed using finite dif- 
ferences. The method was tested to see if its superior 
convergence rate compensated for the larger number 
of function evaluations required by the Jacobian 
evaluation. 

3.2.5. Constraints on the solution. In solving in- 
verse problems it is quite important to constrain the 
solution using a priori information to mitigate any 
ill-posed character of the problem. For the present 
problem constraints on the geometry of the internal 
surfaces, or on the localized character of the distribu- 
tion of cr can be formulated. However, most available 
non-linear multi-dimensional optimization schemes 
are formulated for unconstrained problems, and do 
not permit imposition of additional constraints. As 
discussed previously, our choice of the parameteriz- 

ation of the unknown interfaces or surfaces, introduc- 
es some of this a priori information in the form of the 
function, 6, or in the parameterization of Sinr, without 
requiring specific additional constraints. 

We implemented further constraints in a numerical 
manner by artificially modifying the error and numer- 
ical gradient calculation procedures. For example, in 
the case of a problem where multiple inner surfaces 
are to be identified, the routine that evaluates the 
error in the measurements was modified to return 
large values of the error when presented with config- 
urations known to be wrong. These included config- 
urations that have overlapping inner bodies, or to 
very large or very small sizes of the inner inclusions. In 
these cases the error evaluating function returns an 
artificially large value of the error, and an error gradi- 
ent vector set to the unit vector in the direction that 
leads away from the error. 

3.3. Code for the EIT problem 
BEM-based numerical codes for solving the for- 

ward problem in two dimensions and three dimen- 
sions were developed. These codes were then used to 
synthesize EIT experimental data by simulating the 
measurement process for known configuration. 
Measurements were assumed available at each node 
of the BEM discretization. The forward problem 
codes were then embedded in an iterative minimiz- 
ation procedure. The codes were started with arbi- 
trary guess configurations and the minimization 
procedure was used to obtain successive configurations. 

4. RESULTS 

4.1. Comparison of minimization techniques 
All methods were initially tested on the imaging 

problem of a large cylinder containing one or many 
smaller inner cylindrical regions of zero conductivity. 
Since each of the inclusions is modelled as a circle it is 
parameterized by three parameters-the coordinates 
of its center and the radius. The methods were ob- 
served to converge very well for a variety of inner 
distributions of circles of varying sizes. 

A systematic comparison between the three 
methods was conducted to choose one for further 
development. A specific example is shown in Figs 
2 and 3. Figure 2 shows the convergence history of the 
Powell method. The nodes on the boundary of the 
exact solution are marked with open circles, the nodes 
on the initial guess are marked with + symbols, and 
the other circles are the converged solutions at the end 
of every Powell iteration. The other methods have 
similar convergence histories. 

Figure 3 shows the value of the error at each func- 
tion evaluation against the number of evaluations. All 
three methods exhibit convergence, with the downhill 
simplex method the fastest, followed by the Powell 
method, and the conjugate gradient method. The 
graph for the Powell method shows that as the one- 
dimensional minimizations are performed the code 
might visit points with higher errors. However, the 



2190 R. Duraiswami et al. 

2 circle case: Porcll method 

Fig. 2. Two internal regions of zero conductivity, indicated with lines with open circles, are to be imaged. 
The initial guess assumed is indicated with + marks. This problem was used to benchmark the three 

minimization methods. Also shown are the sequence of iterates for the Powell method. 
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Fig 3. Error vs the number of forward problem solutions for the downhill simplex, Powell and conjugate 
gradient methods for solution of the EIT inverse problem of Fig. 2. 

trend of the error shows convergence. This curve away from the true minimum, while the Powell 
would indicate that the downhill simplex method method appeared to be more robust and converged on 
should be chosen. However, for some cases the down- all the cases considered. Accordingly, the Powell method 
hill simplex method code would get stuck at a point was then employed for all subsequent evaluations. 
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4.2. Ident$cation of inclusions in two dimensions iteration. This takes less than a minute on our SGI 
The method was tried on a problem in which the Indigo workstation. 

inner shape was arbitrary, and characterized by the As the number of objects is increased the dimension 
location of a point, the ‘center’, and a set of Legendre of the parameter space in which the minimum has to 
polynomial coefficients given in eq. (10). The shape in be found increases, and we expect the minimization to 
Fig. 4 was drawn arbitrarily. As seen in the figure, the be harder. However, we found that the Powell method 
Powell method converges satisfactorily within one is able to achieve the solutions to the problem. In Fig. 5 

Fig. 4. EIT reconstruction of a region of zero conductivity with a jagged boundary. The inverse problem 
solution used a 13 parameter Legendre parametrization. Satisfactory convergence is seen, even after one 

iteration. 

Fig. 5. EIT reconstruction of 5 circles enclosing regions of zero conductivity starting from an arbitrary 
guess. 
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Fig. 6. EIT reconstruction of 2 arbitrary shapes (lines with open circles). A Legendre polynomial para- 
meterization was used, even though the shapes are not well representable with such polynomials. Despite 

this, satisfactory convergence is observed. 

Fig. 7. EIT reconstruction of 3 arbitrary shapes using a 7-parameter Legendre parameterization. Initial 
guess is denoted by the dashed line, the successive iterates by solid lines, and the actual shape by the line 

with open circles. 
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I 1 Lo I -20 -10 0 10 20 30 

Fig. 8. EIT reconstruction of three arbitrary shapes (-o-o-) with the number of guessed shapes assumed to 
be two. The second computed shape spans the region occupied by two of the actual shapes (- - - initial 

guess, - converged solution). 

we present the result of such an inversion for five 
circles. An excellent convergence can be seen for an 
initial arbitrary guess (also shown on the figure) after 
about 10 iterations. 

In Fig. 6 we show a further attempt at deducing two 
arbitrary shapes using the Powell method. Again, the 
shapes were entered using arbitrary freehand drawing, 
and their reconstruction was sought in terms of two 
sets of 11 Legendre polynomials. Here the Legendre 
polynomials cannot faithfully represent the drawn 
shape. However, despite this, the method achieved 
a satisfactory identification. Finally, Fig. 7 shows an 
example of three arbitrary-shaped inclusions. The re- 
construction is done with 4 Legendre polynomials. 

In the previous examples, the number of inclusions 
was assumed known in the inverse problem solution. 
In Fig. 8 we show a case where two inclusions are 
guessed while the domain contains three. The solution 
identified one inclusion correctly and the other two 
are approached by an overlapping computed shape. 
Figure 9 shows a converse case where the three inclu- 
sions are assumed and they approximately identified 
the regions occupied by the two shapes actually pres- 

ent. These results further emphasize the robustness 
and flexibility of the method that would allow it to be 
successful in the real imaging problems. Obviously, 
more work is required to include the number of inclu- 
sions in the parameters to be determined by the in- 
verse problem solution. 

4.3. Identification of inclusions in three dimensions 
In three dimensions we sought to image regions 

with zero conductivity inside a larger spherical con- 
ducting region. The first example was to correctly find 
the position and radius of an included sphere of zero 
conductivity. Excellent convergence is also obtained 
for this case. Figure 10 shows a successful solution of 
a case where the radius of the outer domain is chosen 
to be 10, with the inside sphere of radius R =2 at 
(3, 1, -2). The initial guess is R =5 at (2, -3, 1). 

Figure 11 shows a successful implementation of the 
code in the case where two spheres were sought. The 
initial guess of the spheres is shown in a cross section 
as the starred circles. The final shape is marked with 
the circle. The figure also shows the cross sections at 
different iteration numbers. 
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-20 -10 0 10 20 0 

Fig. 9. EIT reconstruction of two arbitrary shapes (-o-o-) with the number of guessed shapes assumed to 
be three. Again, the region occupied by the actual shapes is identified by the computed shapes (- - - initial 

guess, __ converged solution). 

Fig. 10. EIT reconstruction in three dimensions: a spherical region of zero conductivity embedded in an 
outer spherical region is imaged.The initial guess and the converged solutions are shown. 
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3D, 2 spherea. cross-section at y=O plane 
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Contomphere 

. . . . . . . . . . . . . . . 
?? Initial Guess 
cl Converged & Exact Solution 

., 

Fig. 11. Two spherical regions of zero conductivity embedded in an outer spherical region are imaged.The 
top figure shows a cross-sectional view with the initial guess (marked with stars), successive iterates, and the 
exact solution (marked with circles). A three-dimensional view of initial guess and converged solution is 

shown below. 

5. CONCLUSIONS 

This study has developed some preliminary BEM 
techniques for electrical impedance tomography. 
Computational codes for the forward problem were 
developed and optimized for use in the inverse prob- 
lem by accounting for the fact that they would be used 
repeatedly with the same geometrical discretiz- 
atiomelectrode setup but for different distributions of 
conductivity/inner surfaces. 

A new methodology for parametrizing the un- 
knowns of the sought impedance distribution was 

also developed. This decouples the parametrization of 
the unknown body shapes from the geometrical dis- 
cretization of the problem domain, and allows the 
inclusion of available a priori information. This has 
the potential of mitigating the ill-posed nature of the 
inversion considerably. Different alternative decoupled 
parameterizations for the problems were developed. 

The codes were then embedded in simple standard 
minimization schemes (downhill simplex, Powell and 
conjugate gradient) and found to converge to the 
exact distribution for many examples, e.g. for imaging 
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multiple circles and spheres, respectively, in two- and Dobson, D. C. and Santosa, F. (1994) An image- 
three-dimensions, for the identification of multiple enhancement technique for electrical impedance 
arbitrary shapes in two-dimensions. tomography. Inverse Problems 10, 317-334. 
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NOTATION 

matrices in boundary element method 
multiplier of angle/solid angle in BEM for- 
mulation 
difference between measured and predicted 
values of the potential 
electrode 
a function 
indices 
number of electrodes 
number of experiments 
normal direction and vector 
vector of parameters to be determined 
number of parameters 
radial coordinate 
surface of boundaries enclosing the domain 
position vectors 
angular coordinate 
the constant 
conductivity 
electric potential 
the domain of the problem 
the nabla operator 

REFERENCES 

Barber, B. and Brown, B. H. (1984) Applied potential 
tomography. J. Phys. E. Sci. Instrum. 17, 723-733. 

Chahine, G. L. and Duraiswami, R. (1992) Dynamical 
interactions in a multi-bubble cloud. ASME J. 
Fluids Engng 114, 680-686. 

Chahine, G. L. and Duraiswami, R. (1994) Boundary 
element method for calculating 2D and 3D under- 
water explosion bubble behavior in free water and 
near structures. White Oak Detachment Technical 
Report NSWCDD/TR-93/44. Naval Surface War- 
fare Center. 

Chahine, G. L. and Perdue, T. 0. (1989) A 3D bound- 
ary element method for explosion bubble dynamics. 
in Drops and Bubbles, ed. T. G. Wang, A.I.P. Con- 
ference Prcoeedings, Vol. 197, pp. 169-187. 

graphy using dual reciprocity bo&dary element 
techniques. Computers and Structures (accepted). 

Holder, D. (ed.) (1993) Clinical and Physiological Ap- 
plications of Electrical Impedance Tomography. 
UCL Press, London, U.K. 

Holder, D. and Brown, B. (eds) (1993) Biomedical 
applications of EIT: a critical review. In Clinical and 
Physiological Applications of Electrical Impedance 
Tomography. UCL Press, London, U.K. 

Jones, 0. C., Lin, J.-T., Shu, H., Ovacik, L. and He, Y. 
(1994) Impedance imaging relative to binary mix- 
tures. In Proceedings, Liquid Solid Flows, 1994, eds 
M. C. Roco, C. T. Crowe, D. D. Joseph and E. E. 
Michaelides, ASME FED-Vol. 189. ASME, New 
York, U.S.A. 

O’Hern, T. J., Torczynski, J. R., Ceccio, S. L., Tassin, 
A. L., Chahine, G. L., Duraiswami, R. and Sarkar, K. 
(1995) Development of an electrical impedance to- 
mography system for an air-water vertical bubble 
column. In Forum on Measurement Techniques in 
Multiphase Flows, FED-Vol. 233, pp. 531-537. 
ASME, New York, U.S.A. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and 
Flannery, B. P. (1992) Numerical Recipes, 2nd Edn. 
Cambridge University Press, Cambridge. 

Quinto, E. T., Cheney, M. and Kuchment, P. (eds) 
(1994) Tomography, Impedance Imaging, and Inte- 
gral Geometry. American Mathematical Society, 
Providence, RI, U.S.A. 

Somersalo, E., Cheney, M. and Isaacson, D. (1992) 
Existence and uniqueness for electrode models for 
electric current computed tomography. SIAM J. 
Appl. Math. 52, 1023-1040. 

Santosa, F. and Vogelius, M. (1990) A backprojection 
algorithm for electrical impedance imaging. SIAM 
J. Appl. Math. 50, 216-243. 

Webster, J. G. (ed.) (1990) Electrical impedance imag- 
ing. In Electrical Impedance Tomography. Adam 
Hilger, New York, U.S.A. 

Yorkey, T. J., Webster, J. G. and Tompkins, W. J. 
(1987) Comparing reconstruction algorithms for 
electrical impedance tomography. IEEE Trans. 
Biomedical Engng 11, 843-852. 


