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Abstract 

The shear induced collective diffusivity in an emulsion of viscous drops, specifically as a function of 

viscosity ratio, was computed using a fully resolved numerical method. An initially randomly packed layer 

of viscous drops spreading due to drop-drop interactions in an imposed shear has been simulated. The shear 

induced collective diffusivity coefficient was computed using a self-similar solution of the drop 

concentration profile. We also directly obtained the collective diffusivity (the collective diffusivity 

coefficient multiplied by the average drop volume fraction) itself, computing the dynamic structure factor 

from the simulated drop positionsan analysis typically applied only to homogeneous systems. The two 

quantities computed using entirely different methods are in broad agreement including their predictions of 

nonmonotonic variations with increasing capillary number and viscosity ratio. The computed values were 

also found to roughly match with past experimental measurements. The gradient diffusivity coefficient 

computed here, as expected, was found to be roughly one order of magnitude larger than the self-diffusivity 

for a dilute emulsion previously computed using pair-wise simulation of viscous drops in shear. The 

gradient diffusivity was found to be non-monotonic with increasing capillary number, similar to what was 

found for the self-diffusivity computed previously. However, gradient diffusivity also showed non-

monotonicity with increasing viscosity ratio, unlike the previously computed self-diffusivity. The 

difference in variation could arise from drops not reaching equilibrium deformation between 

interactionsan effect absent in the pair-wise simulation used for computation of self-diffusivityor from 

an intrinsic difference in physics underlying the two diffusivities. Indeed we offer a qualitative explanation 

of the nonmonotonic variation by relating it to average nonmonotonic drop deformation with increasing 

viscosity ratio. We also provided empirical correlations of the collective diffusivity as a function of 

viscosity ratio and capillary number.   

  



1 Introduction 

Non-colloidal particles in a sheared suspension or emulsion undergo a diffusive motion due to shear induced 

hydrodynamic interactions between particles [1-5] which can be of great importance in chemical and 

biomedical flows. Specifically, for red blood cells (RBC) in blood vessels at the physical hematocrit level 

of ~45%, such shear induced diffusion plays a critical role in determining their interactions and spatial 

concentration [6, 7]. Recently, we computed collective or gradient diffusivity in a concentrated viscous 

emulsion for the first time using fully resolved direct numerical simulation for a viscosity matched system 

[8]. In this short article, we extend the analysis to emulsions where the drop viscosity differs from the matrix 

viscosity. Additional novelty of the work stems from an alternative means of computing collective 

diffusivity using dynamic structure factor theory in a non-homogeneous system. The dynamic structure 

factor theory has previously been used only in homogeneous systems.     

 For a review of the literature of the shear induced diffusion we refer to our recent paper [8]. Briefly, 

shear induced diffusion is characterized by self-diffusivity 2 ( )s sD a f  (  is the shear rate, a the particle 

radius, and ( )sf  the non-dimensional self-diffusivity,   volume fraction) that defines the random motion 

of individual particles and present even in a homogeneous suspension or emulsion, and collective or 

gradient diffusivity 2 ( )c cD a f   ( ( )cf  is the non-dimensional collective diffusivity) that defines the 

diffusive flux cD    in presence of a concentration gradient [9]. Shear induced self- and collective 

diffusion in rigid sphere suspensions have been widely studied both experimentally [3, 10] and numerically 

[11-15] since the pioneering work of Eckstein, Bailey [1].  However, emulsions of viscous drops in contrast 

hasn’t been studied much. The first measurement of  collective diffusivity in a viscous emulsion by King 

and Leighton [16] was marred by presence of stabilizing surfactants and gave rise to values much smaller 

than theoretically expected. The only successful measurement of collective diffusivity in a viscous emulsion 

in the literature was performed by Hudson [17] who used more viscous drops to avoid emulsion instability. 

Self and collective diffusivities in RBCs and vesicles have been measured in in vitro channels [6, 7, 18, 

19].  Self-diffusivity in a viscous emulsion has been measured using pair-interactions between drops [4] in 

a dilute system as well as using full scale simulation in a non-dilute system [20]. Pair-wise simulation of 

vesicles [21, 22] and RBCs [23] have been used to compute self-diffusivity in a dilute system of such 

complex rheological particles.  Note that unlike self-diffusivity, collective diffusivity computation by 

summing pair-wise displacement results in divergent integrals. Such problems could be addressed by a 

renormalization procedure using global constraints, as has been applied in analytical computation of 

effective stresses and sedimentation velocity in a rigid sphere suspension [24, 25].     



 In our previous article, we proposed a technique to compute collective diffusivity by numerically 

simulating a layer of initially closely packed drops diffusing in a plane shear. We used front tracking finite 

difference method [26-29] to fully resolve each drop deforming and moving past each other. We obtained 

values for non-dimensional collective diffusivity coefficient that compared well with previous experiments 

[6, 17].  Our simulation shows a non-monotonic variation in collective diffusivity with capillary number 

where with increasing capillary number, initially the diffusivity increases, reaches a maximum and 

subsequently decreases for larger values of capillary number. Although there was no other study of 

collective diffusivity versus capillary number in the literature, the self-diffusivity values computed using 

pair-wise simulation by Loewenberg and Hinch [4] also showed a similar non-monotonic trend.  

 Our previous study of a viscosity-matched system is extended here to systems where drop and 

matrix viscosities differ. Note that due to its ubiquitous presence in many chemical and biological 

phenomena, and at the same time the difficulties in performing controlled experiments and the concomitant 

sparse literature till date, the shear induced diffusion warrants further fundamental studies, such as the one 

attempted here, to delineate the nature of shear induced diffusion. We have also developed a dynamic 

structure factor theory based method to compute collective diffusivity. This method has so far been limited 

to homogeneous system. Furthermore, the main result found herethe non-monotonic variation of 

collective diffusivity with viscosity ratio, which differs from variation of self-diffusivity obtained 

previously using pair-wise interactions [4]a posteriori justifies the current study. We provide a detailed 

comparison with their pair-wise drop trajectories to establish the accuracy of our simulation technique.  

 

  

 



 

Figure 1 A schematic of the layer of randomly placed drops in simple shear flow. 

 

2 Theoretical formulation 

In this section, we provide the mathematical formulation and the numerical technique. The description here 

closely follows that of our previous article [8] and presented here briefly for completeness.  A layer of 

randomly packed drops of radius a and viscosity d  suspended in a fluid of viscosity m  is subjected to 

simple shear flow (Figure 1). They interact and move past each other resulting in effectively a diffusive 

motion.  

2.1 Gradient diffusivity from self-similar solution 

The problem (it is homogeneous in the x and z directions) results in a diffusion equation for the local volume 

fraction,  ,y t  in the y direction: 

 ( )cD
t y y

   


  
,  (1) 

with 2

2c a fD  (assumption of two-particle interactions being dominant and thereby the rate of collision 

being  ) [4-6, 30]. Here 2f  (subscript c for collective diffusivity
,2cf  has been dropped for convenience) 

is the nondimensional collective diffusivity in the velocity-gradient direction, the focus of the present work. 



The assumption of linear dependence of cD on volume fraction, or equivalently the dominance of pairwise 

interaction is a posteriori justified by the simulation results.  

 

 (a) (b) 

Figure 2 (a) Cube of the width of the layer of drops is plotted as a function of time grows linearly with time. 

Snapshots of the evolving drop configurations at various time instants. (b) Concentration profile of the 

drops at various time instants, showing a parabolic profile broadening with time. Inset shows a collapse of 

the same when plotted against the scaled similarity variable according to Eq. (2). 

It has been shown by a detailed analysis that when a fixed number of particles spread due to shear 

induced diffusion, Equation (1), nondimensionalized using '/ , 't t y y a  . admits a self-similar 

parabolic concentration [6] 

   1/3 2 1/3

2 2( ) ( ') ( / 6), '/ ( ')f t b y f t           (2) 

in the similarity variable   (b  is a free parameter). Note the 
1 3t spread of the profile in contrast to 

1 2t

growth in systems with a constant diffusivity cD  (i.e. independent of volume fraction). Note that in case 

of particles spreading from one side in an initially Heaviside concentration profile [30], the characteristic 

exponent is still 1/2, even when  
2

2c

ma fD   with 1m  .  It can be shown [6], that according to (2), the 

half-width w of the ( ')y  profile at half-height, satisfies  
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2 0 / (4', 9 ( , ')2), oow N dyw Kt K f N y t       . (3)  

Here 0w is the initial width and oN  is a conserved quantity, related to the particular nature of the problem 

mentioned beforea fixed number of particles diffusing out. 2f  is computed by fitting a parabolic curve 

for the droplet concentration at any instant of time and obtaining the half-width w (t’). In Malipeddi and 

Sarkar [8], we also proposed and developed an alternative method that avoids curve fitting, and computes 

the standard deviation, called “modified” width, of the concentration profile from the drop positions ( iy  ) 

as  
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 Similar to Eq. 3, the cube of the modified width, w3, scales linearly with time, albeit with a slightly different 

constant 

                                             
3 3

2 0' ', ' 9 10 5)/ (ow w K t K f N                 (5) 

In Malipeddi and Sarkar [8] we showed that the two procedures gave rise to identical values within 

statistical variations intrinsic to the system. Here, we use Eq. (5) to obtain the value of the collective 

diffusivity 2f . Each simulation is run till ' 200t  . We discard the data in the initial transient region before 

the self-similar profile is reached (t<20). The remaining portion of the data is split into 4 smaller intervals 

of 45 inverse shear units. The length of these intervals is enough to ensure that the drop movements in each 

interval are uncorrelated. The slope of 3 3

ow w  vs time for each sub-interval is calculated and the mean 

value of these is reported. The standard deviation of the value across these sub-intervals is used to estimate 

the uncertainty in the measurement.  

2.2 Gradient diffusivity from dynamic structure factor 

Both self- and collective diffusivities can also be computed from particle dynamics in a homogeneous 

system [9, 13]. The computation of collective or gradient diffusivitywhich measures diffusion down a 

concentration gradientin a homogeneous system is counter-intuitive; it is predicted on the analysis of the 

decay of the spontaneously arising stochastic fluctuations encapsulated in the wave number dependent 

dynamic structure factor.  Originally the theory stemmed from computation of diffusivity from dynamic 

light scattering (DLS), where scattered response of a monochromatic beam of laser from a scattering 

volume containing multiple scatterers (large macromolecules such as DNA, proteins, amino acids, viruses 



and bacteria) is measured [31]. For a dilute system of non-interacting scatterers, the autocorrelation of the 

fluctuation decays exponentially and the decay time is inversely proportional to the diffusivity. For 

concentrated systems, hydrodynamic interactions between the fluctuating particles cannot be neglected and 

the measured scattered response requires careful analysis [32-34] and proper interpretation. In different 

limits it reduces to collective- or self-diffusivity [9]. Leshansky and Brady [14] carefully described the 

theory and applied to shear induced diffusion. The analysis assumes no coalescence or breakup, as was also 

true for our simulation. 

  The scattered response at wavenumberk (nondimensionalized by a) from N scatterers located at 

( '), 1,2,...t N  x  is proportional to the intermediate scattering function  

( ( ') (0))
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 
k x x
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 Note that using the property of Dirac delta function, the number density of the scatterers (here droplets) 

and its spatial Fourier transform can be written as  
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Therefore, 
*ˆ ˆ( , ') 1/ ( , ') ( ,0)F t N n t nk k k may be regarded as measuring the autocorrelation of the 

fluctuation '( ', ')n tx  (where 0( ', ) '( ', ')n t n n t x x ) at wavenumberk for a statistically homogeneous 

system, as the constant background 0n would not contribute to the autocorrelation. The system is not 

homogeneous but evolves from a nonhomogeneous initial condition. Leshansky and Brady [14] showed 

that the number density satisfies an advection diffusion equation in a shear flow  U Γ x  ( U is the average 

flow and Γ is the velocity gradient tensor):   

2( ) cn
n n

t


     


U Γ x D .        (8) 

In spite of the advection terms in equation (8), in a simple shear due to the orthogonality of the k (= ˆky ) 

vector to the velocity field, one obtains a simple relation for the diffusivity in the gradient direction [14]:   
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2.3 Direct numerical simulation 

We solve the incompressible Navier-Stokes equations using a front-tracking method [27, 35]: 
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 Here u, p, ρ and μ are the velocity, pressure, density and viscosity respectively. κ is the local drop surface 

curvature, n is the unit outward normal to the surface 𝜕B of all drops and   is the interfacial tension. In 

this numerical method, all drops, and their interactions are resolved. The method has been used by our 

group in many problems involving drops [27, 36, 37] and capsules [38-40] in viscous and viscoelastic fluids 

[41-48]. Here, a uniform shear flow is generated in a computational domain, which is periodic in the x and 

z directions and has numerical walls in the y direction moving with specified velocities (Figure 1). The 

distance between the walls is yL  = 28a (a is the drop radius) sufficiently large to simulate an unbounded 

shear. The length of the domain in the x and z directions is xL  = zL  =14a. A 96×192×96 uniform grid is 

used in the computational domain leading to 15 grid points per drop diameter, shown to be sufficient in our 

earlier studies. In our previous article [8], we carefully varied the domain lengths to ensure that the results 

are independent of them. There we also showed that the results didn’t change with drop numbers above 70 

or correspondingly with 0N (=1.43 here) beyond a value. The simulation here are executed with 70 drops.  

3 Results and Discussion 

3.1 Effects of viscosity ratio variation 

We calculate the collective diffusivity coefficient  2f  for a range of viscosity ratio using the self-similar 

scaling of the drop layer width. We also compute the collective diffusivity itself  
c

yyD  using the wave-

number dependent dynamic structure factor (DSF).  

 



 

 (a) (b) 

Figure 3 Cube of Width of the drop layer vs time, for various viscosity ratios for Ca=0.05(a) and 

Ca=0.30(b) showing the expected linear trend.  

3.1.1 2f  from scaling of the layer width 

Figure 3 shows the growth of the width of the drop layer with time for different viscosity ratios at Ca =0.05 

(Figure 3a) and Ca =0.30 (Figure 3b) displaying clearly a 1/3rd scaling of the layer width with time. From 

the slopes, 2f is computed according to  Eq.(3), and plotted in Figure 5(a). As can be expected form Figure 

3, slope varies non-monotonically with 
  (Figure 4a):  f2 increases initially with increasing 

 and reaches 

a maximum around the viscosity ratio of about 1, and then decreases. At higher viscosity ratios, drop 

deformation is known to decrease, reaching the limit of a rigid sphere, thereby resulting in lower diffusivity. 

In fact due to reversibility of the Stokes flow, pair-wise interaction fails to produce any diffusive motion in 

the rigid-particle limit.  In a rigid-sphere suspension,
2

yyD  in the leading order [5], and therefore  2 0f 

.  



 

  (a) (b) 

Figure 4 (a) Dimensionless coefficient of diffusion, f2 vs. viscosity ratio,
 ,  for different capillary 

numbers. (b) Main figure shows mean drop deformation parameter and inset shows drop orientation 

angle. 

Note that we found a nonmonotonic variation  2f  with Ca previously [8]. Similar to the case there, the 

reason for the nonmonotonic behavior is the drop geometry as a function of 
 . In Figure 4(b), we compute 

drop deformation characterized by Taylor deformation ( ) / ( )D L B L B    [L being the maximum 

distance of the drop interface from its center and the B being the minimum distance] [49], averaged over 

all drops, once it reaches a steady value after initial transients. It shows that with increasing
 , D  first 

increases, increase roughly coinciding with the region where 2f  also increases, and then decreases. At the 

same time the drop inclination angle  , also plotted in Figure 4(b) with the flow direction steadily 

decreases. The increasing trend of D  and the variation of    are consistent with the small deformation 

moderate 
  perturbative results (19 16) / (16 16)D Ca      [49] and 

/ 4 (2 3)(19 16) / (80 80)Ca          [50] [As is well recognized in the literature, the analytical 

result fails to predict decreasing trend of D  at higher viscosity ratio]. The initially increasing drop 

deformation increases hindrance to passage of drops past each other, increasing diffusivity coefficient 2f . 

Subsequently the decreasing deformation as well as decreasing inclination angle facilitates drops passing 

each other, reducing 2f . Note that Rusconi and Stone [30] have shown that the geometry of the suspended 

particles can have significant effects on gradient diffusivity, e.g., highly asymmetric plate-like particles 



have gradient diffusivity two orders of magnitude higher than that of rigid spheres at similar volume 

fraction.  

We find collective diffusivity coefficient computed here  as well as in our previous paper [8] consistently 

8-9 times higher than the ones computed using simulation of pair-interaction between drops for a dilute 

emulsion by Loewenberg and Hinch [4]. This ratio is similar to what was found for rough sphere 

suspensionsratio of collective diffusivity to self-diffusivity is ~6 [5].  As noted before Loewenberg and 

Hinch [4] found self-diffusivity to vary non-monotonically with increasing Ca as did we [8], (also see 

below). However, their self-diffusivity coefficient 
,2sf  didn’t show a non-monotonic variation with 

 ; it 

showed a constant variation for the small  
  and then a strictly monotonic decay for larger values of 

 . 

Using  an identical approach of simulating pair-interactions, Omori, Ishikawa [23] computed the self-

diffusivity of a dilute suspension red blood cells to find a monotonically decreasing value for  
,2sf .  Note 

however that the self and gradient diffusivities although related describes manifestly different aspects of 

emulsion behaviors and could have different trends. Although, the current work focuses on collective 

diffusivity, we compare here our simulation method with that of  Loewenberg and Hinch [4]. Computing 

self-diffusivity by simulating pair-interactions between droplets using their method would require for a 

single set of parameters ~60-70 simulations with different relative initial positions of the droplets. It would 

be computationally expensive, onerous and is clearly outside the scope of the present work. However, here 

we compute pair-interactions for droplets in shear to show in Figure 5(a) that the final net relative 

displacement (initially at (0,0,0) and (-10a,0.5a,0)) as a function of viscosity ratio matches identically with 

the boundary element simulations of Loewenberg and Hinch [4]. In Figure 5(b), the relative y-displacement 

between drops as a function of relative x-displacement has been shown for two different capillary numbers 

to also offer excellent match with experiments [51] as well as more recent boundary element simulation 

from the same group Cristini, Bławzdziewicz [52].  Successful comparison with previous methods offers 

validation for our methods, specifically for our numerical simulation technique. It remains difficult to 

conclusively argue for a simple physical reason for the trend in effective properties of overall emulsions 

such as gradient- or self-diffusivities. However, the monotonic decrease of final relative displacement in 



Figure 6(a) offers a plausible reason for monotonically decreasing self-diffusivity in a dilute emulsion, i.e., 

neglecting more-than-two-particle interaction, as seen in Loewenberg and Hinch [4].      

 

 (a) (b) 

Figure 5 (a) Relative displacement of two drops interacting in shear flow comparing our results (solid line) 

with those obtained from boundary element method (dotted line) by Cristini, Bławzdziewicz [52] and 

experimental measurements(open circles) by S. and M. [53]. Main figure is with Ca=0.135, 1.37   . 

Inset is with Ca=0.13 and 1.4  .(b) Final net relative displacement of two drops, initially separated 

0.5a in the gradient direction, for different viscosity ratios,
 , at Ca=0.30. Present results(diamonds) 

compare reasonably well with boundary element method results of Loewenberg and Hinch [4]. 

3.1.2 
2/c

yyD a  using dynamic structure factor  

We compute ( , ')F tk using (6) from the drop positions (discarding initial data ' 20t  ). The resulting 

intermediate scattering functions are averaged over overlapping intervals to obtain a smooth time evolution 

curve [14]. Figure 6(a) shows that 
2ln ( ', ) /F t k k  at Ca =0.20 and 

 =5.0  for different wavenumbers 

normalized by their initial value displays a linear growth with the slope being asymptotic to a single value 

in the limit of 0k   or the large wavelength limit. This limiting slope, 
,c yyD , is plotted as a function of 

  for several Ca  values in Figure 6(b). The trend is remarkably similar to that of 2f  vs 
  in Figure 

4(a). A direct comparison is not available as the emulsion is not homogeneous and the average concentration 

of the progressively widening drop layer decreases with time. However note that the ratio 
2/c

yyD f    ~0.1, 

is close to an average volume fraction   over the whole diffusive process starting with the maximum initial  



~0.25 for the initial packed layer. We plot in the inset of Figure 6(a) the slope of 
2ln /F k  as a function 

of wavenumber k, for different 
 .  However a straightforward interpretation of this quantity as the wave 

number dependent diffusivity is not possible as is done in the literature [14] because of the inhomogeneous 

nature of the problem. Here the process is dominated by an initial inhomogeneous distribution containing 

finite concentration gradient relaxing through a nonlinear diffusive process (Eq.(1)) unlike the typical case 

in the literature where it is really a spontaneously arising infinitesimal stochastic concentration fluctuation 

relaxing. As a result, the slope increases with k  unlike say in Leshansky and Brady [14] where it decreases 

reaching self-diffusivity in the limit of k  .  However, we note that the dynamic structure factor, which 

were typically computed and applied only to homogeneous systems, offers a novel perspective about 

gradient diffusivity of non-homogeneous systems.  Finally, the remarkable similarity of the curves in 

Figures 5(a) and 7(b), despite completely independent way of computing them makes us confident about 

the trends of variations of 2f  as well as  
c

yyD .   

 

 (a) (b) 

Figure 6 (a) 
2/c

yyD a  vs wavenumber,k for a few different viscosity ratios with Ca=0.20 and 
 =5.0  (b) 

2/c

yyD a  vs. viscosity ratio for different Ca. 

 

3.2 Effects of Capillary number variation 

 



 

 (a) (b) 

 

 (c) (d) 

Figure 7 (a) Dimensionless gradient diffusivity f2 and (b) average drop deformation parameter, orientation 

angle vs. Ca for different viscosity ratios. (c) 
2/c

yyD a  vs Ca for different viscosity ratio. (d) Surface plot 

showing f2 as a function of capillary number, Ca, and viscosity ratio, 
 . The correlation describing the 

surface is given in Eq. 9. 

Figure 7(a) plots 2f  vs. Ca for three different viscosity ratios, all showing the nonmonotonic variation. As 

noted in [8], the nonmonotonicity arises from the competition between rising deformation and decreasing 

inclination with increasing Ca (shown in Figure 7(b)), the former increasing diffusivity initially, and the 



latter eventually dominating to decrease it. Note that as we noted in [8], slightly different explanation was 

offered by Loewenberg and Hinch [4] for the nonmonotonic variation of the self-diffusivity coefficient 
,2sf  

with Ca. In Figure 7(c), we also plot 
c

yyD  as a function of Ca for the same three 
  values. It shows again 

very similar trends as in Figure 7(c).  Note that the values found here are in agreement with the experimental 

measurement of Hudson [17] who performed the experiments for viscosity ratios of 0.17-0.19 (depending 

on the drop liquids) obtaining 2f  = 0.16-0.25 for Ca of 0.02-0.40. Grandchamp et. al. [6] measured a value 

of ~0.77 (rescaled by particle volume) for red blood cells. 

Finally, by combining all the results from the previous sections, we have generated an empirical 

correlation for the dimensionless diffusivity, f2, as a function of capillary number and viscosity ratio: 

2 3 2 2

2

2

3.12 10 10

10

4.06 6.52

1.62 3.52 0.2.

f Ca Ca

Ca

 



 



 



   



 

  
  (11) 

The empirical correlation is plotted in Figure 7(d). Similarly, an empirical correlation for 
2/c

yyD a  is also 

obtained (not plotted as the variation is similar to Figure 7(d)): 
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4 Conclusion 

We have computed the shear induced gradient diffusivity in a sheared viscous emulsion of droplets using a 

front-tracking based direct numerical simulation. We simulated the deformation and motion of droplets 

initially packed in a layer subjected to a simple shear. We focused on the effects of the varying viscosity 

ratio between the drop and matrix fluids. From the time evolution of the droplet phase concentration, we 

compute the coefficient 2f  of the gradient or collective diffusivity using a self-similar solution of the one 

dimensional nonlinear diffusion equation assumed to be satisfied by the system. There haven’t been any 

prior numerical computation of the quantity in the literature for emulsion of viscous drops, capsules or 

vesicles. There has been one experimental measurement of this quantity for viscous emulsion in the 

literature, which is in agreement with the values computed here. It is also of the same order as what has 

been measured in suspensions of cells and vesicles.  



The computed coefficient varied non-monotonically with the viscosity ratioin the range of 

viscosity ratio [0.1, ~2] gradient diffusivity increased with viscosity ratio and decreases for values beyond 

this range. The nonmonotonic behavior arises due to nonmonotonic variation in drop deformation with 

viscosity ratio. The nonmonotonic trend is slightly different from the one computed for self- diffusivity  

computed in the literature using pair-interactions for both viscous droplets [4]the self-diffusivity 

coefficient remained constant for smaller viscosity ratios decreasing monotonically at higher viscosity 

ratiosand capsules [23]monotonically decreasing with the viscosity ratio. We validated our 

computational technique against boundary element technique used by those authors. This led us to believe 

that the  non-monotonic behavior results from multi-particle interactions, or self and gradient diffusivities 

have different variations with viscosity ratio at low viscosity ratio, an issue to be explored in future work.   

We also compute the gradient diffusivity 
c

yyD computing the dynamic structure factor, a 

computation that has so far been restricted to homogeneous suspension. The results when appropriately 

scaled with average volume fraction are in agreement with the computed 2f  values, and more importantly 

they show very similar variation with viscosity ratio, although the two methodologies are very different. 

Based on the simulation results, we offer two phenomenological correlations for 2f  and 
c

yyD  as functions 

of capillary number and viscosity ratio.  
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