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ABSTRACT

Inertial effects on sheared emulsion droplets are a topic of scientific and industrial interest for several applications from processing to
microfluidics. Most of the literature have addressed so far the role of inertia of the continuous phase, which is known to affect shear-induced
droplet deformation and migration at values of the Reynolds number of the external fluid Rec > 1. However, less attention has been paid to
the case of inertial effects inside the droplets, corresponding to values of the Reynolds number of the droplet fluid Red > 1. Such a case is
especially relevant when the viscosity ratio k between the droplet and the external fluid is� 1, which is typical of water-in-oil emulsions
where the low values of droplet viscosity can result in Red > 1, while Rec < 1 due to the larger oil viscosity. Here, we focus on the effect of
droplet inertia under shear flow at k � 1 by high-speed video microscopy experiments in a microcapillary and by numerical simulations
based on a front-tracking finite-difference method. The results unveil the droplet’s three-dimensional shape under shear flow at low viscosity
ratios and show that droplet inertia tends to increase droplet deformation and orientation along the flow direction and to form two vortices
inside the droplets even at small Rec. The latter findings are at variance with the case of external fluid inertia, where droplets become more
aligned with the velocity gradient direction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219152

I. INTRODUCTION

Emulsions are ubiquitous in everyday life, from foodstuff to drugs
and personal care products. In most applications, the properties of
emulsions are highly dependent on the size distribution of the
micrometer-scale droplets dispersed in the continuous phase. In turn,
the size and shape of emulsion droplets are strongly affected by the
flow conditions experienced during processing or usage. Hence, flow-
induced deformation of droplets has been extensively studied in the lit-
erature, both theoretically and experimentally, with a special emphasis
on model flow fields, such as simple shear, which can provide impor-
tant insights into more complex flow conditions.1,2 Most of the litera-
ture has been restricted to slow flows, where inertia can be neglected
and droplet shape can be described in terms of two non-dimensional
parameters: the capillary number Ca and the viscosity ratio k. The for-
mer is the ratio between viscous stress acting to deform the droplet
and interfacial stress tending to restore the spherical shape at rest,
Ca¼ (_cRlc)/r, where _c is the shear rate, R is the undeformed radius of
the droplet, lc is the continuous phase viscosity, and r is the interfacial
tension. The viscosity ratio k¼ ld/lc (ld is the dispersed phase

viscosity) is the other important parameter. Droplet shape is usually
described in terms of two parameters: the deformation parameter,
D¼ (a� b)/(aþ b), where a and b are the two droplet semiaxes in the
shear plane, and the orientation angle h, which is defined as the angle
between the major axis a and the flow direction x. Analytical expres-
sions for the deformation parameter and the orientation angle in the
limit of small deformations were found by Taylor (to first order in
Ca)3 D¼Ca(19k þ 16)/(16k þ 16), and by Chaffey and Brenner (to
second order in Ca)4 h ¼p=4� Cað19kþ 16Þð2kþ 3Þ=ð80kþ 80Þ,
respectively. Both expressions have been found to be in good agree-
ment with experimental data up to moderate deformations, where the
shape of a sheared droplet can be described as an ellipsoid under the
slow flow (Stokes) approximation.5

In many industrial applications, however, such as in emulsion
processing in stirred mixers, turbulent flow conditions are found,
where inertia cannot be neglected, and the Reynolds number, express-
ing the ratio between inertial and viscous stresses, needs to be
accounted for, in addition to Ca and k, to describe droplet shape. The
interaction of droplets with turbulent eddies is a complex problem in
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fluid mechanics. As an example, the motion of a droplet in a potential
vortex has been studied by numerical simulations based on a front-
tracking finite difference method, and a rich and diverse dynamics has
been found, including a resonance phenomenon when the natural fre-
quency of the droplet matches the frequency of the forcing flow.6,7 The
deformation of sub-Kolmogorov-scale droplets has been investigated by
direct numerical simulation of isotropic turbulence, showing the com-
plex interplay between droplet shape and the local fluid velocity gradient
tensor.8,9 A similar approach has been used to investigate the effects of
walls and of surfactants on droplet deformation in turbulent flows.10,11

In addition, the effect of the Reynolds number on the deformation and
breakup of a droplet has been studied by numerical simulations in spe-
cial cases, such as a particulate shear flow12 and an electric field.13

Although droplet shape in turbulent flows is a complex subject,
some useful insight can still be obtained from simple shear flow as a
representative of the flow field experienced by a droplet between two
co-rotating eddies. Indeed, it has been shown14 that the value of the
Reynolds number of the continuous phase Rec ¼ ðqc _cR2Þ=lc(qc is the
density of the continuous phase) at the spatial scale of the droplet size
(1–100lm) is in the range between 0.01 and 100 under typical well-
developed turbulent conditions in a stirred water-based liquid–liquid
system. Hence, while interacting with turbulent eddies in such condi-
tions, the droplet experiences low to moderate values of the Reynolds
number, which has been the focus of most studies concerning droplet
shape in simple shear flow including the effect of inertia.15 One of the
main results from the literature is that inertia acts to rotate the drop
toward the velocity gradient direction.16,17 It has been suggested that
the rotation is due to the formation of vortical swirls at the two ends of
the droplet,18 whose large velocities are associated with negative pres-
sures according to Bernoulli’s equation, thus tilting the droplet with a
suction mechanism analogous to the aerodynamic lift. In this way, the
droplet is subjected to a larger shear deformation in the flow direction
pulling the ends away from each other and tends to break up at lower
critical capillary numbers with increasing Rec.

The topic of droplet breakup under shear with continuous phase
inertia has also received considerable attention. It was shown that in
the presence of inertia, droplet breakup occurs at values of k beyond
the threshold of about 3.7, which is found under a Stokes flow condi-
tion.19 Other inertia-induced phenomena in a shear flow concern the
distribution of drop fragments resulting from breakup,20 effects of geo-
metrical confinement,21,22 the change in the sign of the first and sec-
ond normal stress difference of a dilute emulsion,23 and reversed
streamlines and streamlines spiraling around the vorticity axis.17 From
the experimental side, droplet breakup in turbulent flow has been the
subject of several studies based on high-speed flow visualization.24–29

The role of surfactants on droplet breakup in a turbulent flow has been
also investigated by experiments.30

Most of the above-mentioned studies have focused on viscosity
ratios around 1 or larger. The range of k between 0.1 and 2 at Rec¼ 10
has been explored numerically in Ref. 31 by a diffuse interface free
energy lattice Boltzmann method, and it was found that the droplets
are less elongated and more oriented toward the vertical axis at
increasing k. From the experimental side, works on the deformation of
single droplets in simple shear flow at non-negligible values of Rec are
essentially lacking in the literature, the few available studies being
addressed to statistical quantities of emulsions, such as the distribution
of droplet size in emulsification devices at k around 1 or higher.32

However, if one considers water in oil emulsions, they are often
characterized by values of k � 1, a case which has been neglected in
the literature. It can be noticed that, even for low inertia in the continu-
ous phase, i.e., for Rec <1, due to the low viscosity ratio, the droplet-
based Reynolds number Red ¼ ðqd _cR2Þ=ld ¼ Rec=k>1. For example,
for k¼ 0.01 and Rec¼ 0.1, Red¼ 10, and the question arises about the
effects of droplet inertia on deformation. Our work is addressed at the
latter question both by high-speed video microscopy experiments in a
microcapillary and by numerical simulations based on a front-tracking
finite-difference method. We focus on dilute water-in-oil emulsions at
k¼ 0.01, where droplet interactions can be neglected, and the flow
behavior of an isolated droplet is representative of the emulsion as a
whole. The results are expressed in terms of the three axes and the ori-
entation angle of the droplet, as well as the deformation parameter as a
function of the capillary number. Furthermore, numerical simulations
are exploited to extend the range of parameter values and to obtain
additional quantities, such as the surface rotation and the internal cir-
culation of the droplet, which are not easily accessible by experimental
techniques.

II. MATERIALS AND METHODS
A. Experimental

Two emulsions have been investigated, with the same viscosity
ratio but exhibiting different viscosities of the two phases, as specified
in Table I. One has been obtained by mixing bi-distilled water (dis-
persed phase) with soybean oil (lc¼ 0.06 Pas and qc¼ 0.917g/cm3).
The equilibrium value of the interfacial tension, measured using the
pendant drop technique, is 29mN/m.33 The viscosity ratio k¼ ld/lc,
where ld is the dispersed phase viscosity, is 0.017, and the aqueous dis-
persed phase volume fraction is kept around 5% to reduce droplet–
droplet interactions and coalescence.34,35 The other emulsion with the
same viscosity ratio is obtained by using polydimethylsiloxane (PDMS
purchased from Carl Roth, ld¼ 0.097Pa s, and qd ¼ 0:975 g=ml) dis-
persed in polybutene (PIB, Indopol H-50 purchased from Ineos
Oligomers lc¼ 8.3 Pa s, qc ¼ 0:895 g=cm3), with an interfacial tension
of 2.8mN/m.

A microfluidic approach allowed us to obtain the three-
dimensional shape of single droplets in a dilute emulsion under shear
flow. As shown in Fig. 1(a), a water-in-oil emulsion is fed by a syringe
pump (Harvard 11 Plus) to a circular cross section silica capillary
(with inner diameter of 320lm, Polymicro Technologies, Phoenix,
AZ, USA) placed on the motorized x–y stage (Ludl, Hawthorne, NY,
USA) of an inverted microscope (Axiovert 100-Zeiss). More details on
the apparatus can be found elsewhere.36 Individual droplets close to
the capillary wall are observed by a high-speed camera (Phantom 4.3)
able to acquire up to a thousand frames per seconds and a high magni-
fication objective (Zeiss Plan-Neofluar, 40x/1.3 oil). Images of the

TABLE I. Properties of the systems investigated.

System Phase l (Pa s) q (g/ml) r (mN/m)

Water in soybean oil
Dispersed 0.001 1

29Continuous 0.06 0.917

PDMS in PIB
Dispersed 0.097 0.975

2.8Continuous 8.3 0.895
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droplets flowing inside the microcapillary have been acquired at a rate
(from 10 to 3000 fps) depending on the imposed flow. They were ana-
lyzed by image analysis techniques by using a commercial software
package (Image Pro-Plus). With this setup, shear rates high enough to
induce significant droplet deformations can be reached, while avoiding
buoyancy effects (the ratio between gravitational and shear forces
DqgR
lc _c

� 1). The flow of the continuous phase can still be taken as lami-

nar since Rec � 1 (e.g., for _c ¼ 12 700 s�1, which is the highest value
in the experiments, and R¼ 10lm, Rec¼ 0.02, while Red¼ 1.3).

Concerning the image processing, droplet selection was carried
out due to the presence of (undesired) droplets either out of focus or
out of the simple shear zone. The analysis of the selected droplets in
the field of view was then performed in a semi-automated way (i.e., by
choosing a gray level threshold to capture the droplet’s contour). In
particular, the following geometrical parameters were measured: drop-
let axis (a, b, c), distance d between the droplet center of mass and the
capillary wall and the droplet velocity, v. The latter were used to calcu-
late the local shear rate as _c ¼ v=d. About 100 droplets were analyzed
at each flow rate.

As shown by Li and Pozrikidis,37 the flow of a droplet in a tube
can be approximated to simple shear if droplet radius R is sufficiently
small compared to the tube radius r (i.e., R/r< 0.1) and the distance of
the droplet from the wall is �5R to avoid confinement effects33 [see
Fig. 1(b)]. In this work, we exploit this microfluidics setup to image the
flowing droplets both in the shear plane [x–y in Fig. 1(c)] and along
the vorticity gradient [x–z in Fig. 1(c)] by changing the microscope
focus and the observation window [Fig. 1(c)]. Two independent,

perpendicular views are acquired and, by matching the corresponding
droplet contours, its three-dimensional shape was obtained. Droplet
contours in the two planes are matched (and thus identified as if corre-
sponding to the same droplet) when the projection of the a-axis is
equal to the long axis in the x–z plane. All the measurements of droplet
shape have been done by using a commercial image analysis software
(Image Pro Plus, Media Cybernetics).

From the experimental point of view, the investigation of the
effects of droplet inertia in water in oil emulsions is beset by several dif-
ficulties, such as small size of droplets (usually in the 1–10lm range),
buoyancy due to the density difference, which leads to phase separa-
tion, and high values of shear rate needed to deform a droplet from the
spherical equilibrium shape due to the low viscosities of water and oil.
The lower lc is, the higher is _c required to have a significant value of
Ca and thus of droplet deformation. For example, to reach Ca�0.1
with typical values of R¼ 10lm, lc¼ 50 mPa s, r¼ 10mN/m, _c
should be of the order of 103 s�1, which is difficult to achieve at the
single droplet level with conventional laboratory instrumentation.

B. Numerical simulation

The system is governed by incompressible momentum conserva-
tion equations in the entire domain X,

@ðquÞ
@t

þr � ðquuÞ ¼ r � s�
ð
@B

dxBjnCd x � xBÞ;ð (1)

r � u ¼ 0: (2)

FIG. 1. (a) Schematic of the microfluidic experimental setup. (b) Sketch of the velocity profile with the quasi-simple shear zone near the walls. (c) Droplet shapes in the x–y
(vorticity) and x–z (velocity gradient) planes are obtained by focusing the microscope at the midplane and close to the wall of the capillary cross section, respectively; a, b and
c are the semi-axes, h is the orientation angle, and d is the distance between droplet center and wall. (d) Schematic of the computational setup.
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The total stress s is written as s ¼ �pIþ lD, where p is the pressure,
I is the identity tensor, l is the drop-fluid system viscosity, and
D ¼ ðruÞ þ ðruÞT is twice the deformation rate tensor. l takes the
value of ld in the drop phase and that of lc in the continuous phase.
The last term of Eq. (1) describes interfacial tension at the drop surface
xB, C is the interfacial tension (constant), @B represents the surface
of the drop, j is the local curvature, n is the outward normal, and
dðx � xBÞ is the three-dimensional Dirac delta function. The presence
of the surface tension introduces a jump in normal stress across the
interface represented by the delta function. A smooth representation
of the delta function is used for the numerical front-tracking imple-
mentation. The drop surface was discretized with triangular elements
resulting in a Lagrangian front grid separate from the three-
dimensional Eulerian volume grid. The front-tracking method was
originally developed by Tryggvason and coworkers38 using a single
fluid formulation for the multiphase flow in the entire domain, with
parameters such as viscosity and density changing sharply but
smoothly over a few grid spacings across the interface between fluids.
The material properties are represented as

qðxÞ ¼ qc þ ðqd � qcÞJðxÞ;
lðxÞ ¼ lc þ ðld � lcÞJðxÞ; (3)

where

JðxÞ ¼ 1; x 2 Xd;
0; x 2 Xc:

�
(4)

The numerical method uses a smooth representation of the indicator
function JðxÞ. The velocity on the drop surface is related to the sur-
rounding fluid as

uðxBÞ ¼
ð
X

dðx � xBÞuðxÞdx (5)

with a corresponding smooth representation of the delta function.
Once the velocities on the drop elements are identified, the points in
the drop surface are advected as

dxB
dt

¼ uðxÞ: (6)

A smooth representation of the d–function was achieved by using the
Peskin interpolation.39 Essentially, the fluid properties vary sharply but
continuously over 4Dx Eulerian grid points as

dðx � xBÞ ¼ d1ðx � xBÞd1ðy � yBÞd1ðz � zBÞ; (7)

where

d1ðx � xBÞ ¼ 1
4Dx

1þ cos
p

2Dx
ðx � xBÞ

� �
; jx � xBj � 2Dx:

(8)

The momentum equation is solved on a staggered grid with an opera-
tor splitting projection finite difference method.40 A semi-implicit
alternating direction implicit (ADI) scheme was adopted to alleviate
restrictions on time-stepping (Dt < qðDxÞ2=6l). The time step nondi-
mensionalized by the inverse shear rate for our simulations is 10�4. A
multi-grid solver was used to solve the pressure Poisson equation. The
code has been validated extensively with benchmark problems and

numerous single and multi-drop simulations.6,40–42 The details can be
found in our previous articles.43,44 For the completeness of this manu-
script, in Sec. II B 1, we provide a grid convergence, domain adequacy,
and dispersed phase Reynolds number study of the code.

To numerically solve the problem, initially, a drop of radius R is
placed in the center of the computational domain of size Lx¼ 10R,
Ly¼ 10R, and Lz¼ 5R [Fig. 1(d)], which has been found to be suffi-
cient to neglect any wall effect (see Sec. II B 1). The computational
domain was discretized with 128� 128� 64 uniform cartesian grid
points in the x, y, and z directions, respectively (grid independence
study in Sec. II B 1). The top and the bottom walls in the y-direction
moved with equal and opposite velocity U to create a uniform shear
rate of strength _c ¼ 2U=Ly . Periodic boundary conditions were
applied in the x (flow) and z (vorticity) directions. A fully developed
shear flow was assumed at t¼ 0. Flow parameters are non-
dimensionalized, with the drop radius R as the length scale and inverse
shear rate as the timescale. The Reynolds number, Rec ¼ qc _cR

2/lc,
capillary number, Ca¼ _cRlc/r, viscosity ratio k ¼ ld=lc; and Red
¼ Rec=k are the main non-dimensional numbers governing the prob-
lem. To be consistent with the experiment, the velocity U of the top
wall and bottom wall is varied to attain various strengths of shear rates
leading to various Ca and Red. For other sets of simulation, Red has
been kept constant, and the interfacial tension has been varied to
achieve different Ca to compare with the former one. The density
ratios between the dispersed and continuous phases for both the water
in soybean oil and PDMS in the PIB system are �1.09. Thus, the den-
sity ratio for the numerical simulations is kept at 1 for all the cases.
The viscosity ratio has been kept at 0.01 to achieve higher inertia inside
the drop. From the numerical side, the simulation of an extremely low
viscosity ratio is also hindered by several challenges. Because of the
explicit time stepping used in the code here, instead of Stokes flow, we
keep Rec at a low but finite value of 0.01 and decrease the viscosity ratio
to achieve a higher Reynolds number inside the drop. The code is an
MPI-based fully parallelized solver, and it is run on the George
Washington University’s HPC cluster PEGASUS. In the following, we
plot the drop shapes using the front geometry. We compute the major
(a/R) and the minor (b/R) axes of the drop by determining its maxi-
mum and the minimum dimensions, which in the present case of
plane shear are in the x–y plane. The c/R is distance from the drop cen-
ter of the point with the maximum z-dimension. The period of rota-
tion for a point at the drop surface is computed by noting how long it
takes for a vertex on the drop surface complete one rotation.

1. Grid, domain independence, and dispersed phase
Reynolds number

The code has been extensively validated against experimental and
numerical results in the literature involving single and multiple drops
in shear. For instance, in Ref. 23 (Fig. 3 there), we successfully com-
pared the lengths of the three axes of the deformed drop in shear with
experimental observations of Refs. 45 and 46; in Ref. 17 (Fig. 2 there),
we compared detailed geometry of the inertia induced streamlines
between our simulation and computations of Refs. 47 and 48; and in
Ref. 49 (Fig. 4 there), we compared our simulation of drop trajectories
in a shear-induced pair-interaction with experimental observation of
Ref. 50. Here, for the sake of completeness, we offer a brief study of the
grid and domain dependence and show that Rec¼ 0.01 is an adequate
proxy for smaller Recs obtained in the experiments here. In Fig. 2(a),
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we plot droplet deformation for six different grid resolutions in a com-
putational domain of size Lx ¼ 10R, Ly ¼ 10R, and Lz ¼ 5R. The
capillary number is Ca¼ 0.1, viscosity ratio k¼ 0.01, and Red ¼ 10 for
all the cases. For all the grid resolutions, the droplet deforms to an
ellipsoidal shape and eventually attains a steady deformation. The
droplet deformation decreases with the increase in grid refinement,
and the successive difference between corresponding droplet deforma-
tion reduces. In the inset of Fig. 2(a), we plot the relative error of the
steady state droplet deformation against grid size, showing a rate of
convergence close to second order (� 1:7). The droplet shape
[Fig. 2(b)] also does not show a significant difference with grid refine-
ment. An increase in the grid resolution from 128� 128� 64 to
256� 256� 64 changes the drop deformation by less than 3%. Thus,
we choose 128� 128� 64 for all our numerical simulations in Sec.
III. In Fig. 2(c), we plot the droplet deformation for five different
domain sizes (Ly=R) to ensure no effects from the walls in the velocity
gradient direction. Domain sizes of 5R and 7.5R have a strong effect
on the steady state drop deformation; however, the effect starts to
become negligible with further increase. The increase in the domain
size from 10R to 20R changes the drop deformation by less than 1%
[Fig. 2(c) inset]. Corresponding drop shapes also show insignificant
differences [Fig. 2(d)]. We choose Ly ¼ 10R for all simulations.

In Fig. 3(a), we plot the magnitude of the shear rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D : D=2

p
to

show a typical flow field from the simulation. Here,D is twice the defor-
mation rate tensor as described in Sec. II B. Locally, the shear rate is
higher along the extensional and compression regions, where the maxi-
mum value is observed along the extensional region. A lower magni-
tude of shear rate is observed on the top, bottom, front, and back of the
droplet surface. Far from the droplet, the magnitude is equal to the
applied nondimensional shear rate (�1). In the numerical simulations,
because of the explicit time stepping, the lowest Rec is restricted to 0.01

although experiments were performed for values, as low as 10�6, effec-
tively a Stokes flow. In Fig. 3(b), we plot the steady state drop deforma-
tion against continuous phase Reynolds number Rec. The steady state
droplet deformation and droplet shapes [Fig. 3(c)] do not change sig-
nificantly for the Reynolds numbers ranging from 0.01 to 0.1, indicating
that Rec ¼ 0:01 is a sufficient proxy for lower Rec.

III. RESULTS

Representative images of droplet shape along the vorticity and
the velocity gradient axes are shown in Fig. 4, both from experiments
(left) and simulations (right).

The images in Fig. 4 (left panel) (a)–(c) refer to water droplets in
soybean oil at increasing values of Ca and Red obtained by increasing
the flow rate and thus the wall shear rate, which takes values of
several thousands of reciprocal seconds. Under such conditions, Red is
close to 1, and the droplet appears quite deformed and oriented
already at Ca¼ 0.06. The view along the velocity gradient [Fig. 4 left
panel: (a0)–(c0)] shows large droplet deformation as well. The images
in Fig. 4 (left panel) (d)–(f) refer to PDMS droplets in PIB at the same
value of the viscosity ratio but at negligible Red. In these conditions,
droplets are less deformed at similar values of Ca with respect to water
droplets in soybean oil, as can also be seen in the view along the velocity
gradient [Fig. 4 left panel (d0)–(f0)]. Similar qualitative results are found
by numerical simulations, which are shown in Fig. 4 (right panel).

A quantitative analysis of droplet shape is shown in Fig. 5, where
the three semi-axes, normalized with respect to the droplet radius, are
plotted as functions of Ca for the two emulsions, both from the experi-
ments and the numerical simulations.

In the plot, star full symbols correspond to the PDMS in the PIB
system, which exhibits negligible values of Red. The data of a/R (green
stars), b/R (red stars), and c/R (blue stars) are well represented by the

FIG. 2. (a) Droplet deformation for six different grid resolutions at Ca¼ 0.1, k ¼ 0:01, and Red ¼ 10. The inset shows relative error plotted against grid sizes and (b) corre-
sponding droplet shapes for three grid resolutions. (c) Droplet deformation for five different domain sizes in the velocity gradient directions. The inset shows relative error plotted
against domain sizes and (d) corresponding droplet shapes. Flow parameters are the same as (a).
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predictions of the second-order small deformation theory (dashed,
dot-dashed, and continuous lines, respectively). A quite different
behavior is exhibited by the water in soybean oil system (upper full tri-
angles in Fig. 5). Here, a remarkable deviation from the theory

predictions is shown by the data of a/R, which are above the dashed
line, especially at Ca between 0.1 and 0.2. This finding is in line with
the elongated shapes of Fig. 4 left panel (a)–(c). The data of the third
axis c/R, too, do not follow the theory predictions and essentially

FIG. 4. Representative images of sheared droplets along the x–y (vorticity) and x–z (velocity gradient) planes from experiments (left) and numerical simulations (right). (Left
panel) Droplet images for the water in soybean oil system along the x–y plane (a)–(c) and x–z (a0)–(c0) plane at increasing shear rate. Droplet images for PDMS in PIB along
the x–y plane (d)–(f) and x–z (d0)–(f0) plane at increasing shear rate. Scale bar is equal to 10 lm. (Right panel) Droplet images (top from x–y plane and bottom x–z plane) from
numerical simulations at various Ca and Red conditions. For the numerical results, k¼ 0.01 and Rec¼ k Red.

FIG. 3. (a) Contour of the shear rate magnitude for Ca¼ 0.1 and Red ¼ 10. (b) Steady state droplet deformation vs continuous phase Reynolds number (Rec ¼ kRed ) for
Ca¼ 0.2 and Ca¼ 0.11. (c) Droplet shapes at Ca¼ 0.2 and Ca¼ 0.11.
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overlap with the data of b/R, thus showing a flattening of the droplet
shape, which can be seen in the images of Fig. 4 left panel: (d0)–(f0).
Such flattening is similar to previous data from the literature for k < 1
and high Ca, where inertia was negligible and flattening was due to the
dominant effect of viscosity over interfacial tension.51

The results of the numerical simulations are in qualitative agree-
ment with the experiments, as shown by the plot of Fig. 5. The
calculated values of the semi-axis a/R at varying Red tend to
become larger than the ones at small Red (dashed line), with a stronger
deviation at Ca> 0.2. The quantitative difference between experimen-
tal and numerical results can be attributed to the difficulties associated
with a value of k � 1. The numerical simulations allow to extend the
range of values of Ca experimentally accessible, which is limited to
about 0.25 in our setup. In fact, the velocity of the droplets at larger
values of Ca makes imaging more challenging due to motion-induced
blurring.

The semi-axis data of Fig. 5 have been used to calculate the defor-
mation parameter D, which is shown in Fig. 6(a), together with the ori-
entation angle h(b), as functions of the capillary number.

The experimental data of the deformation parameter in Fig. 6(a)
confirm the findings already discussed. While the PDMS in the PIB
system follows the classical linear prediction of Taylor theory, larger
values of D are found for water in soybean oil at values of Ca between
0.1 and 0.2. A similar trend is also found in the numerical simulations
of Fig. 6(a), with a slight deviation in D from the linear theory at larger
values of Ca. For the PDMS in the PIB system, the orientation angle in
Fig. 6(b) is well described by the predictions of the second-order
Chaffey–Brenner theory (equation reported in the Introduction).
Although the measurement of the orientation angle is affected by a
larger experimental error for the water in soybean oil system due to
image blurring at high droplet velocity, the data show a clear down-
ward deviation from the second-order predictions, in qualitative agree-
ment with the numerical simulations. Thus, at values of Red around 1
(Ca� 0.2) and above, droplets are more oriented along the flow direc-
tion with respect to the case of negligible inertia.

Further insight on the results found so far can be obtained by
looking at the rotation of the interface in the equatorial plane and at
flow inside the droplet. The circulation number m ¼ T _c=ð4pÞ, where
T is the period of rotation of a tracer on the droplet interface in the
equatorial plane, is plotted in Fig. 7(a) as a function of Ca for k¼ 1. In
Fig. 7(a), the symbols represent numerical simulations, and the dashed
line is the prediction of the small deformation theory.

The latter has been calculated from the following equation:52

m ¼ kþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 2ð Þp

þ 95k 19kþ 16ð Þ
4 19kð Þ2 þ 20=Cað Þ2
h i 5� kþ 1ð Þ 25k2 þ 50k� 31ð Þ

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 kþ 2ð Þ3

q
2
4

3
5:

(9)

The good agreement between theory and numerical simulations pro-
vides a further validation of the latter. No comparison with experimen-
tal data could be made since it was not possible to measure the period
of rotation in our experimental conditions. The increase in m with Ca,
i.e., a slowing down of interface rotation at k¼ 1, is associated with an
increased droplet deformation and orientation along the flow

FIG. 5. The three normalized droplet semi-axes vs Ca from experiments full points
and numerical simulations (empty points). The experimental data refer to water in
soybean oil (upper triangles), with Red up to 1.3, and PDMS in PIB (stars), with Red
around 2� 10�6. The numerical results are represented by empty stars (Red¼ 1)
and empty triangles (Red varying with shear rate from 5 to 40) symbols. The lines
correspond to the predictions of the second-order small deformation theory. For the
numerical results, k¼ 0.01 and Rec¼ k Red.

FIG. 6. (a) The deformation parameter D vs Ca from experiments and numerical simulations, respectively. (b) The orientation angle h as a function of Ca from experiments and
numerical simulations, respectively. The continuous and dashed lines are predictions of Eqs. (1) and (2) from the second-order small deformation theory. Red varies from
2� 10�6 to 1.3 in the experiments and from 0.5 to 40 in the numerical simulations. For the numerical results, k ¼ 0:01 and Rec ¼ kRed.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 073115 (2024); doi: 10.1063/5.0219152 36, 073115-7

Published under an exclusive license by AIP Publishing

 21 August 2025 18:48:53

pubs.aip.org/aip/phf


direction. The dependence of the circulation number on Ca changes at
a viscosity ratio of 0.01, as shown in Fig. 7(b) for Red varying from 1 to
3.5 (here the line is just a guide to the eye and the predictions of the
small deformation theory are not included in the plot since low values
of k are outside the range of validity of the theory). At such low values
of k, the circulation number m first decreases and then increases with
the capillary number, reaching a minimum around Ca¼ 0.2. This
behavior can be explained by the droplet internal circulation at
k¼ 0.01, which is shown in Fig. 7(c) for Red¼ 1.0 and in Fig. 7(d) for
Red varying from 10 to 30. The images of the internal streamlines in
the former case show the emergence of two vortices inside the droplet,
which occurs around Ca¼ 0.25. For non-negligible droplet inertia, as
shown in Fig. 7(d), the two vortices develop earlier, at Ca¼ 0.2, and
persist at larger values of Ca. Indeed, the onset of the two vortices
inside the droplets takes place at the same values of Ca as the ones cor-
responding to the minima in Fig. 7(b). Since at larger values of Ca, the
circulation number m increases, droplet rotation slows down corre-
spondingly, leading to an increased droplet deformation and orienta-
tion along the flow direction. This behavior is at variance with the case
of inertial flow in the continuous phase, where the droplet is more ori-
ented along the velocity gradient direction due to the formation of vor-
tical swirls at the two ends of the droplet. Our results show that inertial
effects inside the droplet, which are associated with the formation of
two inner vortices, should be taken into account for shear flow at low

viscosity ratios, even if the values of Rec are rather small (i.e., for negli-
gible inertia of the continuous phase).

IV. CONCLUSIONS

The focus of this work is the study of inertial effects inside a drop-
let under shear flow at a low viscosity ratio, a problem which has been
overlooked in the literature in spite of its potential applications. The
condition of non-negligible Red and k�1 is quite challenging to inves-
tigate both from the experimental and the numerical side. Hence, our
approach is based on combining two advanced techniques, one experi-
mental (high-speed flow visualization) and the other numerical (front-
tracking finite-difference simulations), which complement and corrob-
orate each other. In this way, we show that droplet deformation and
orientation are larger as compared to the case of Stokes flow. This
result can be interpreted in terms of the emergence of two vortices
inside the sheared droplet, which start developing at lower values of
Ca for larger values of Red (Fig. 7) and slow down the internal fluid
circulation.

These findings provide some insight into the effects of shear flow
on the 3D shape of droplets of dilute water-in-oil emulsions, which are
associated with low viscosity ratios and are found in a number of appli-
cations, from industrial processing to microfluidics. In such emulsions,
Rec can exhibit low values even at high velocities due to the large vis-
cosity of the oil, whereas Red can take values greater than 1 due to the

FIG. 7. (a) The circulation number m as a function of Ca at k¼ 1 from numerical simulations in the Stokes limit; the dashed line is the prediction of the small deformation theory
[Eq. (3)]. (b) The circulation number m as a function of Ca; the dashed line is a guide to the eye at k¼ 0.01. (c) Streamlines from numerical simulations for different values of
Ca and Red¼ 1.0. (d) Streamlines from numerical simulations for different values of Ca and Red. k¼ 0.01 for (b)–(d) and Rec¼ k Red.
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low viscosity of the water droplets. As a consequence, inertial effects
inside the droplet become significant and can have important implica-
tions on the flow behavior of emulsions. As an example, the increased
deformation experienced by the droplets at larger Red can promote
their breakage in emulsification processes. Potential applications of
our results can be found in the field of microfluidics, where the near-
wall velocity field can be approximated by simple shear flow between
parallel plates. Moreover, the large shear rate at the wall can lead to
non-negligible inertial effects inside the droplets. Future work can be
addressed to overcome the limits of our experimental setup and
explore larger values of Ca, where droplet breakup is expected to take
place. The effect of surfactants on droplet deformation and breakup in
mixing devices, where inertial effects can be quite remarkable, can be
investigated as well. Indeed, the fluid circulation inside the droplet can
affect the distribution of surfactants on the droplet interface, an inter-
esting topic for industrial applications.
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