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A B S T R A C T

Pair interactions of viscous (constant viscosity) drops suspended in a shear-thinning viscous and viscoelastic 
shear flow are numerically investigated using a front-tracking method. Apart from the usual passing trajectories, 
where drops interact and slide past each other in the streamwise direction, we note two new trajectories. Shear- 
thinning (power law index n <1) introduces reversed trajectories, where after interaction the drops reverse 
directions, and viscoelasticity (nonzero Weissenberg number Wi) gives rise to tumbling trajectories, where the 
drops revolve around each other. In a viscous medium, only passing and reversed trajectories are seen in an n-Ca 
phase plot. Passing trajectories transition into reversed ones for small n (more shear-thinning) and low capillary 
numbers Ca with the critical n for transition increasing with decreasing capillary number. In a viscoelastic 
medium, one finds all three trajectories in an n-Wi phase plot: reversed trajectories for low Wi and low n, 
tumbling for high Wi and high n, and passing trajectories in between. The trajectories are explained in terms of 
the streamline topology around a single drop in shear: a region of reversed streamlines due to shear-thinning, and 
a region of spiraling streamlines due to viscoelasticity, both effects being more prominent for low Ca values (less 
deformable drops). Physical reasoning for the reversed streamlines in the presence of shear-thinning is offered, 
relating it to the pressure field.

1. Introduction

The dynamics of rigid spheres and drops in complex fluids have 
attracted significant attention from the fluid mechanics community due 
to their relevance in several natural, industrial, and biological processes, 
such as fracturing [1], sorting cells and particles [2,3], 4D printing [4], 
active fluids [5], isolating cells from blood [6,7], clay [8], flow of debris 
and lava [9], food processing [10] and paint industries [11]. In
vestigations of single and pair-particle dynamics have been critical in 
understanding the rich behaviors of such suspensions and emulsions 
[12–15]. Recently, we studied shear-induced pair interactions between 
viscous drops in a viscoelastic liquid. Here, we extend it to a 
shear-thinning viscoelastic liquid, showing that shear-thinning in
troduces a new reversed pair trajectory.

In Stokes flow, due to its reversibility, two spheres in unbounded 
shear collide and pass to travel along their original streamlines after 
collision unless the reversal symmetry is broken by one of the many 
factors, such as deformability [16], particle roughness [17], inertia [18,
19] and viscoelasticity [20]. Following the pioneering work of Batchelor 

and Green [21] on shear-induced pair-interactions between rigid 
spheres in viscous fluids, experiments exhibited reversible passing tra
jectories for most cases except when they are too close and form a 
doublet rotating/tumbling around each other [22]. For deformable 
drops in an unconfined shear flow, drops undergo only passing trajec
tories in the Stokes flow limit. The drop deformability, however, breaks 
the reversal symmetry, post-collision drops (in contrast to rigid spheres) 
assume different streamlines, increasing their separation, which in an 
emulsion leads to shear-induced diffusivity [16,23–25].

Confinement drastically changes the pair trajectories of rigid parti
cles. Zurita-Gotor et al [26] found that confining walls make a rigid 
particle pair get close to each other, swap vertical positions, and sepa
rate without passing in a reversed or swapping trajectory. A similar 
reversed trajectory in the presence of confinement was also seen for 
viscous drops by Sarkar et al [27] in negligible inertia, where particles 
collide and reverse direction; furthermore, they experience a 
wall-induced lift, moving them to be aligned along the center line. On 
the other hand, in the presence of inertia, the symmetry of the stream
line is broken both for rigid spheres and viscous drops; one observes 
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passing and reversed trajectories [26–28]. Olapade et al [29], Singh and 
Sarkar [30], and Chen et al [31] computed passing and reversed tra
jectories for viscous drop pair in a viscous liquid as a function of Rey
nolds number, Capillary number, and viscosity ratio.

Rigid particle interactions have also been extensively studied in 
viscoelastic fluids [32–38] but mostly in a strongly confined domain, 
which, as noted above have strong effects on particle trajectories. 
Depending on confinement, they showed reversed (also called ‘return’), 
tumbling or passing trajectories [34,36]. Similar to the viscous case, 
deformable drops in a viscoelastic matrix introduce additional com
plexities, not yet adequately investigated. Aggarwal and Sarkar [39] and 
Guido et al [40] found that the deformation of a viscous drop under 
shear is non-monotonically affected by the viscoelasticity of the sur
rounding fluid, which in turn influences their pair trajectory. However, 
pair interactions between drops in a viscoelastic system haven’t been 
studied much. Recently, our group [41] investigated the pair in
teractions of two viscous drops in a constant viscosity viscoelastic liquid 
under shear with negligible inertia and obtained passing and tumbling 
trajectories. Stiffer drops and increased viscoelasticity favor tumbling 
trajectory: the critical value of the Weissenberg number for the transi
tion from passing to tumbling is lower for lower capillary numbers, i.e., 
for drops with less deformability.

The shear-thinning property of a fluid, i.e., a decrease of viscosity 
with increasing shear rate, plays an important role in the 3D printability 
of bioink [42,43] and presents interesting physical phenomena such as 
transient friction during pressure wave propagation [44] and recovery 
decrease [45]. In a shear-thinning viscoelastic fluid, Feng et al [46] 
through a 2D simulation found shear-thinning and inertia have 
competing effects on a solid particle moving in a viscoelastic fluid in a 
Couette or Poiseuille flow. Several experimental studies observed sig
nificant effects of shear-thinning on suspensions [47,48]. In 
shear-induced pair interactions, spheres in a shear-thinning viscoelastic 
fluid displayed reversed trajectories on limited occasions [20]. We found 
one numerical investigation of pairwise interactions of viscous drops in a 
shear-thinning inelastic (Carreau-Yasuda) fluid. In contrast to the results 
below, it observed only passing trajectories using a limited variation of 
the shear-thinning parameter and a relatively large capillary number of 
0.1 [49].

Despite the growing interest in pair interactions, the dual influence 
of viscoelasticity and shear-thinning on the pair interactions between 
drops has not been widely investigated [12–14,32,41,49]. Here, we 
numerically study the shear-induced pair interactions of viscous drops in 
a viscoelastic shear-thinning matrix in an unconfined shear. The math
ematical formulation and problem setup are described in Sections 2 and 
3. Section 4 discusses the results. Section 5 offers a summary.

2. Mathematical equations and numerical implementation

The mathematical formulation for simulating drops in a matrix for 
both viscous and viscoelastic fluids has been described in detail in our 
previous publications [39,50]. Here, a brief overview is provided for 
completeness. A single-fluid formulation of the drops-matrix system is 
considered in the entire computational domain Ω (a box of dimensions 
Lx × Ly × Lz): 

∂(ρu)
∂t

+∇⋅(ρuu) =∇⋅τ −
∫

∂B

dxBκnΓδ(x − xB) (1) 

∇⋅u = 0 (2) 

The total stress τ in general is decomposed into pressure, polymeric 
(absent in a viscous medium), and viscous parts, 

τ = − pI + Tp + Tv, Tv = μsD, (3) 

where ρ is the density, p the pressure, μs the solvent viscosity, and D =
∇u + (∇u)T is twice the deformation rate tensor. The superscript T 

represents the transpose. Tp is the viscoelastic stress due to the presence 
of polymer. Γ is the interfacial tension (constant), ∂B represents the 
surface of the drop consisting of points xB, κ is the local curvature, n the 
outward normal vector to the surface, and δ(x − xB) is the three- 
dimensional Dirac delta function. We employed the FENE-MCR (finite 
extensible nonlinear elastic modified Chillicot Rallison) model [51] to 
characterize the viscoelastic behavior of the liquid outside the drops, as 
in our recent publications [41,52,53]. The FENE-MCR model can be 
derived from the FENE-CR constitutive equation with conformation 
tensor A: 

∂A
∂t

+ u⋅∇A = ∇u⋅A + A⋅(∇u)T
−

f
λ
(A − I), (4) 

where A = λTp/
(

μpf
)
+ I, f =

(
L2 + λ

( ∑
Tp

ii
)
/μp

)
/
(
L2 − 3

)
, μp is the 

polymeric viscosity, λ is the relaxation time, and L is the finite extensi
bility. If L is infinite, which makes f = 1, we can get the Oldroyd-B 
equation. In our simulation, L=20 is used for the FENE-CR model 
(shown in previous studies to be sufficient; a further increase of L doesn’t 
change results [53]). The total viscosity for the viscoelastic fluid is μ =

μs + μp (for viscous fluid μp=0). As has been shown in our previous 
publication [41], appropriate approximations lead to the modified 
FENE-CR equation: 

∂Tp

∂t
+
{
u⋅∇Tp − ∇u⋅Tp − Tp⋅∇uT}+

f
λ
Tp =

f
λ
μpD, (5) 

which upon elastic viscous splitting [54] obtains for Tp at n+1 time step 
as 

(Tp)
n+1

=
[
(Tp)

n
−
(

μpD
)n]

e− (f/λ)Δt +
(

μpD
)n

−
λ
f
[
u⋅∇Tp − ∇u⋅Tp − Tp⋅∇uT]n[1 − e− (f/λ)Δt]

(6) 

We use a front-tracking method [55] to track the two drops’ location. 
An alternating direction implicit (ADI) method is employed to alleviate 
the time step limitations. The model and its numerical implementation 
have been extensively validated in previous articles [50,53,56]. The 
FENE-MCR model has been extensively used in modeling different 
viscoelastic flows [57–60].

In this paper, we simulate viscous drops in a shear-thinning visco
elastic surrounding liquid. To model the shear-thinning behavior of the 
matrix liquid, we used a power-law model of shear-thinning [42,61–65] 
for the viscosity μ(γ̇) in a range [γ̇l, γ̇u] limited by a lower and a higher 
constant viscosity values outside the range: 

μ(γ̇) =

⎧
⎪⎪⎨

⎪⎪⎩

μ0, γ̇ ≤ γ̇l

μ0(γ̇/γ̇l)
n− 1

, γ̇l < γ̇ ≤ γ̇u

μ0/100, γ̇ > γ̇u

(7) 

where μ0 is zero shear rate viscosity. γ̇ =
̅̅̅̅̅̅̅̅̅̅̅
D : D

√
is the local shear rate, γ̇l 

is the lower shear rate limit, and γ̇u = γ̇l1001/1− n is the upper shear rate 
limit. Fig. 1(a) shows the curve of viscosity at n=0.5. At n = 1, the matrix 
fluid is a Boger fluid with a fixed viscosity μ0. As in our previous studies, 
we choose the simplest constitutive model acknowledging the 
complexity of real polymeric liquids. We feel that such an approach is 
sufficient for the present problem, where the purpose is to understand 
the fundamental physics underlying the model problem. Note that the 
shear-thinning viscoelastic model adopted here is different from the 
White Metzner model [66], where a shear rate dependent relaxation 
time λ(γ̇) = μ(γ̇)/G0 is used with a constant shear modulus G0. Unlike the 
White-Metzner model, the shear-thinning Oldroyd B type model with an 
independent relaxation time, used here as well as by others [46], allows 
a global Weissenberg number Wi separating the shear-thinning effects 
from viscoelastic ones. Also, note that the White-Metzner model doesn’t 
satisfy the Lodge-Meissner relationship [11]. In any event, physics of the 
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model chosen here is similar to that of the White-Metzner model with a 
quantitative difference (in the values of the parameters describing 
transitions between different trajectories Figs. 6 and 12) due to the 
simultaneous lessening of viscoelastic effects with shear-thinning.

3. Problem setup

Two spherical drops with equal radius a are located at the center of 
the rectangular computation domain (Fig. 1b). The initial separations 
between drops are chosen as Δx0=2.5a in x direction, Δy0=0.25a in the 
y-direction, and Δz0=0 in the z-direction (except in a later section where 
the effects of initial separation are briefly studied). The domain size is Lx 
= 30a, Ly = 30a, Lz = 5a and is discretized with 384 × 384 × 64 grid 
points along the x, y, z directions, respectively. A shear flow is generated 
by moving the top and the bottom wall with velocities U and -U, 
resulting in a global shear rate of γ̇1 = 2U/Ly. The drop radius a and the 
inverse shear rate γ̇1

− 1 serve as the length and the time scales, respec
tively, leading to Re = ρm γ̇1a2/μm0, capillary number Ca = μm0γ̇1a /Γ 
and Weissenberg number, Wi = λγ̇1 as the leading defining nondimen
sional parameters. ρm is the density of the matrix and μm0 is the zero- 
shear rate viscosity of the matrix. The subscripts m and d refer to ma
trix and the drop fluid respectively. As noted before, the drop is a con
stant viscosity Newtonian liquid. The other nondimensional parameters 
of the problem are viscosity ratio λμ = μd/μm, the ratio of the polymeric 
viscosity of the matrix to the total matrix viscosity β = μpm /μm and 
shear-thinning parameters—the power law index n and the nondimen
sional lower shear rate γ̇l/γ̇1. We choose γ̇l/γ̇1 = 1, i.e., the shear- 
thinning is triggered above γ̇1. Because of the explicit nature of the 
code and the resulting time step limitation, the Reynolds number is set at 
0.01 as a proxy for Stokes flow. In view of the large number of param
eters in this problem and our computational resources, we restrict our 
study to a viscosity-matched system (λμ = 1) except in Section 4.4.3
where the effects of viscosity ratio variation are studied. We also 
consider equal contributions of polymeric and solvent viscosities (β =
0.5) in the matrix medium. We have previously investigated the effects 

of viscosity ratio and initial drop positions with expected results: 
increasing separations decreases interactions [29,30,41], and increasing 
β increases the effect of viscoelasticity. Previous publications in our 
group established that the domain sizes Lx = 30a, Ly = 30a, Lz = 5a 
with 384 × 384 × 64 grid points along x, y, and z directions are 
sufficient for the study of pair interaction and avoiding the boundary 
effects. Note that the code has been extensively investigated for domain 
and grid convergence [29,67], showing that larger domain sizes and 

smaller grids lead to insignificant changes. Pair interactions between 
drops in a viscoelastic system haven’t been studied before. However, we 
successfully compared with previous experiments by Guido and 
Simeone [68] and boundary element simulations by Lac et al [69] of 
pair-interactions in a viscous system. Below, we first study the effects of 
shear-thinning in a viscous matrix and then in a viscoelastic matrix.

4. Results and discussion

To study the effects of shear-thinning, we vary n in the range between 
0.1 and 1 (constant viscosity). Experimentally, the concentration of 
anionic polyacrylamide polymer (PAAm) was varied in water to obtain 
different n obtaining a minimum value of 0.08 [47,70]. In natural and 
industrial viscoelastic flows, the strength of elasticity (Wi) varies widely. 
We have chosen to vary it in a limited range (≤ 2) to avoid the 
well-known high Weissenberg numerical problem. However, we feel 
that the study adequately describes the underlying physics.

4.1. Viscosity field in a shear-thinning viscous medium around a viscous 
drop in shear

We briefly see the effects of shear-thinning around a single drop in a 
shear flow in Fig. 2. It shows the contours of shear rate and viscosity for 
different n for a single drop in a viscous liquid. The shear rate distri
butions are as expected with a higher value near the drop (Figs. 2a, b, c); 
it aligns with the results in the article [38]. For the constant viscosity 
case, the viscosity is matched (Fig. 2d). As we increase shear-thinning, 
locally viscosity reduces in the high shear rate region near the drop 
from the n=0.5 case (Fig. 2e) to the n=0.1 case (Fig. 2f). Note the in
crease in local shear rate near the drop with increasing shear-thinning 
(Figs. 2a, b, c) to compensate for the decrease in viscosity keeping a 
stress balance.

4.2. Three trajectories: passing, reversed, and tumbling

The system is characterized by many parameters, Ca, n, Wi. In the 
sections below we vary them systematically, to find three different tra
jectories for the drop pairs in this article (Fig. 3): passing, reversed, and 
tumbling. Note that the pair-interaction of drops in a constant viscosity 
Newtonian system shows only a passing trajectory. In a passing trajec
tory, drops or particles approach in the compression quadrant and then 
slide past each other in the separation quadrant along a streamline 
parallelly shifted from the original streamline (Fig. 3a). It leads to shear- 
induced diffusion [24,25,71,72] and enhanced mixing. In a reversed 

Fig. 1. (a) Shear-thinning viscosity at n=0.5 (b) Schematic of the problem with the initial separations of two drops in a shear flow.
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trajectory—seen before for drops at finite Reynolds numbers [29,30], 
for rigid spheres in confined Stokes flow (called swapping trajectories 
[26]), and in a viscoelastic shear-thinning liquid [20]—particles upon 
approach reverse direction and move backward (Fig. 3b). In a tumbling 
trajectory, seen in viscoelastic fluid [41], drops don’t separate and rotate 
around each other after the collision (Fig. 3c).

4.3. Pair-interactions in a viscous matrix

4.3.1. Effects of shear-thinning
Before we investigate the effects of shear-thinning on pair in

teractions between viscous drops in a viscoelastic matrix, we investigate 
them in a viscous matrix (Wi = 0) which has not been studied before. We 
take two cases of Ca, one smaller (Ca=0.01) and therefore less 
deformable than the other case (Ca=0.2) noting the important effect 
that Capillary number plays in drop dynamics, namely the deformability 
[27,29,30,41,49]. Both for Ca= 0.01 (Fig. 4a) and Ca = 0.2 (Fig. 4b), we 
note a passing trajectory for the constant viscosity case (n=1). Upon 
decreasing the power law index n the trajectories progressively change 
but always are passing for the more deformable Ca= 0.2. However, for 
Ca = 0.01, they eventually transition into the reversed type for n= 0.1. 
For the passing trajectories, decreasing n brings the drops closer to each 
other (absolute values of Δx/a and Δy/a decreasing) during their 
approach in the compression quadrant. Fig. 4(c) plots 

(
Δy − Δy0

)
/a as a 

function of time for Ca = 0.01 to demonstrate the closer approach over a 
longer time duration. In the region between the approaching drops, the 
rapid spatial change in velocity, i.e., the shear rate, reduces the viscosity 
leading to a closer approach. Decreasing n for passing trajectories also 

increases the final Δy/a, i.e. interaction-induced cross-stream displace
ment of the drops, which is critical for mixing of shear-induced diffusion 
[16]. In Fig. 4(d), we plot the final 

(
Δy − Δy0

)
/a for the passing tra

jectories as a function of n for different Ca. We note that for a particular 
capillary number, increasing n decreases net cross-stream separation, 
and thereby shear-induced diffusion. However, note that for a specific 
value of n, there is a non-monotonic variation with Ca, as was also 
observed in the boundary element simulation of non-shear-thinning 
pair-interaction by Loewenberg and Hinch [16] (Fig. 5 in that article). 
This has resulted in non-monotonic variation in shear-induced diffu
sivity with Ca seen in our recent investigation [23]. The non
monotonicity results from the competition between increasing 
deformation (at lower Ca leading to stronger interactions and larger 
cross-stream separation) and decreasing inclination (at higher Ca lead
ing to easier passing and lower cross-stream separation) with capillary 
number.

4.3.2. Physics of trajectories and phase plot in n-Ca for the viscous matrix 
case

To understand the physics behind the transition from passing to 
reversed trajectories caused by shear-thinning, we plot the streamlines 
around a single drop in a shear flow after a steady state has been reached 
(Fig. 5). Even though the pair dynamics of drops are a result of the in
teractions between them, and the presence of the second drop changes 
the flow field, the flow field around a single drop offers an approximate 
physical explanation of the pair trajectories. The parameters for Fig. 5(a) 
and (b) correspond to passing and reversed trajectories, respectively at 
Ca= 0.01. Compared to the constant viscosity case (Fig. 5a) with mostly 

Fig. 2. The contour of shear rate and corresponding viscosity in the domain at Wi=0 and Ca=0.01 (a) shear rate at n=1 (b) shear rate at n=0.5 (c) shear rate at n=0.1 
(d) viscosity at n=1 (e) viscosity at n=0.5 (f) viscosity at n=0.1.
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passing streamlines, shear-thinning introduces a large region of reversed 
streamlines in Fig. 5(b), which in pair interaction captures the second 
drop in a reversed trajectory. Fig. 5(c) shows that for a more deformable 
drop (Ca=0.2), the region of reversed streamlines becomes smaller due 
to the decreased opposition to the imposed flow, leading to an eventual 
passing trajectory in pair interactions. The more deformed shapes [50,
73] of these deformable drops facilitate them to slide past each other. 

The transition from a passing to a reversed trajectory has also been 
observed in the previous study of pairwise interaction under shear in a 
constant-viscosity medium by Olapade et al [29] in the presence of 
inertia. They noted that increasing capillary number (Ca) induces two 
effects: firstly, the drops experience less opposing force, and secondly, a 
portion of the more deformed drop reaches the region with reversed 
streamlines. The interplay between these effects ultimately determines 
the type of trajectory observed, as is also the case here in Figs. 5 (a) and 
(b). Unlike in our previous study in the presence of inertia, here the 
reversed streamlines around the drop (Fig. 5) are caused by 
shear-thinning.

In Fig. 5, we also show the pressure for all three cases. Note that 
according to the equation of motion in the Stokes limit: 

∂i[μ(γ̇)∂i]vj = ∂jp, (8) 

a weighted Laplacian of the velocity component vj is approximately 
related to the pressure gradient (normal to the pressure contour shown), 
at least in a local shear flow approximation. We note that the Stokes Eq. 
(8) is elliptic, with pressure and velocity both being dependent variables 
to be simultaneously determined by the boundary value problem. 
Therefore, the physics of reversed streamlines in the presence of shear- 
thinning is not amenable to an easy understanding. However, the 
reversed streamlines in Figs. 5(b) and (c) are associated with the pres
sure fields in the presence of shear-thinning. The pressure fields here are 
different from the one in Fig. 5(a) in the absence of shear-thinning, with 
the lobe structures guiding the streamlines. For the case of the larger Ca 
=0.2 (Fig. 5c), due to the less rigid drop, the effect on the pressure field 
is diminished, reducing the extent of the reversed streamline region. 
This in turn fails to result in a reversed trajectory.

Finally, Fig. 6 shows an n-Ca phase plot based on extensive simula
tions varying the parameters. It shows that reversed trajectories are 
restricted to the low n and low Ca region, i.e., high shear-thinning and 
less deformable drops as a result of the competing dynamics described 
above.

4.3.3. Effects of viscosity ratio on pair-interactions
In this paper, we primarily investigated pair interactions in a 

viscosity-matched system (λμ = 1). In this section, we briefly consider 
the effects of viscosity ratio variation at Ca=0.2, n=0.1, Δx0= 2.5a and 
Δy0= 0.25a. Previously, Fig. 4(b) indicated that λμ = 1 leads to passing 
trajectories for all n’s considered for these parameters. However, Fig. 7
here shows that with varying λμ, one gets both passing and reversed 
trajectories. For the highest λμ = 10, the trajectory is passing with a 
minimum final cross-stream relative separation. Note that in absence of 
shear-thinning, λμ→∞ leads to the reversible rigid sphere limit with no 
net increase in cross-stream separation. In Fig. 7, as λμ decreases, the 
drops experience closer approaches leading to a larger final cross-stream 
relative separation. Eventually, the trajectory transitions to reversed for 
λμ = 0.1.

4.4. Pair-interactions in a viscoelastic matrix

4.4.1. Effects of shear-thinning in a viscoelastic matrix
In this section, we discuss the effects of outer fluid elasticity and 

shear-thinning on the interaction between two drops under shear. Pre
viously [41], we showed that pair interactions in a viscoelastic fluid 
without shear-thinning result in a transition of passing trajectories into 
tumbling above a critical value of the Wi, due to the effects of visco
elastic stresses. The effects are more dominant for less deformed drops at 
lower capillary numbers. The previous section on the viscous case also 
underscores the fact that the interesting dynamics due to shear-thinning 
are primarily seen at low capillary numbers. In the interest of brevity, we 
therefore restrict our viscoelastic simulation to the capillary number of 
Ca = 0.01 and vary Wi in the range 0.1–1.5 and n in 0.1–1 in this section 
leaving the effects of capillary number variation to the SubSection 4.4.3. 

Fig. 3. Drop interaction snapshots at different simulation times along with 
their cross-stream separation at Ca=0.01 (a) passing trajectory at Wi=0, n=1 
(b) reversed trajectory at Wi=0, n=0.25 (c) tumbling trajectory at Wi=1.2, n=1. 
Insets show the relative trajectories of drops Δy/a vs. Δx/a.
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The n = 1 case represents non-shear-thinning Boger fluids with varying 
relaxation times.

In Fig. 8, we consider the relative trajectory of drops for varying n for 
two different Wi values, with the initial drop separations fixed at Δx0=

2.5a and Δy0= 0.25a for all simulations. At Wi=0.2, Fig. 8(a) shows 
passing trajectories for n>0.25 transitioning to reversed trajectories for 
n= 0.25 and 0.1. In Fig. 8(b), we see at Wi=1.2 only passing and tum
bling trajectories, tumbling for n=0.75, 1 and passing ones for stronger 
shear-thinning. For passing trajectories, the final cross-stream separa
tion (Δyf /a) increases with shear-thinning to be discussed in detail 
below. This demonstrates a significant effect of shear-thinning on drop 
trajectories.

In Fig. 9(a), we investigate the effects of Wi variation at a fixed n 
=0.25. It shows all trajectories: reversed for Wi = 0.1, 0.3, passing for Wi 
= 0.8, 1.2, and finally a tumbling trajectory for Wi = 1.5. We also see for 
passing trajectories, the post-interaction drop separation decreases with 
increasing Wi, eventually becoming a tumbling trajectory. At Wi = 1.5, 
the tumbling trajectory is not symmetric because the drops experience a 
slight excursion in the z-direction. To understand it better, we show 
snapshots of the drops at different time instants in Fig. 9(b) with Δz/a vs. 
Δx/a in its inset. It demonstrates that drops go around each other with a 
small shift in the z-direction.

Given that the drops are initially positioned at the central plane (z 
=0), the slight z-shift in approaching the final tumbling trajectory is due 
to the numerical perturbation breaking the symmetry [18]. Lac et al 
[74] in their study of pair interactions between capsules in shear, 
observed that the initial separation in the z-direction leads to a shifting 
of the passing trajectory in the same direction during the interaction of 
two capsules in a simple shear flow. The physics at the transition be
tween two different regimes, such as here between passing and the 
tumbling trajectories, is inherently sensitive to small perturbations, 
which explains the symmetry breaking and slight traversing of drops in 
the z-direction seen here. Away from transition, i.e., Wi far from the 
critical value, we didn’t observe such symmetry breaking. We have 

previously studied the effects of the vorticity direction offset on pair 
interactions [30].

Fig. 10(a) shows the variation in cross-flow separation Δy/a between 
drop centers as a function of time t’ at Wi =0.2. Similar to the viscous 
case (Fig. 4c), decreasing n results in the peak of Δy/a appearing later, i. 
e., a closer approach (also see Fig. 8a) of drops over longer periods for 
passing trajectories. For n=0.1 and 0.25, one obtains reversed trajec
tories, with shorter period of interactions for n=0.1. At other Wi 
numbers, similar trends are observed. This observation suggests that at a 
specific Wi, as n approaches the critical value for reversed or passing/ 
tumbling trajectories, the drops require a longer time to determine their 
trajectory selection. Finally, for passing trajectories, we plot the final 
cross-stream separation relative to their initial separation of drops as a 
function of n for different Wi (Fig. 10b) as we did in the viscous case. 
Increasing viscoelasticity decreases the separation (anticipating an 
approach to tumbling of drops for higher Wi). The shear-thinning re
duces this effect, i.e., the relative separation increases with n decreasing 
from 1. For Wi =1.2 and n =0.25, 0.5, the final cross-stream separations 
relative to their initial values are negative. Fig. 8(b) shows these cases 
are close to the transition to tumbling (n=0.75 is a tumbling trajectory) 
and initially dips down like a tumbling trajectory before separating into 
a passing trajectory. Note the slight non-monotonicity for Wi =1.0 case 
going from n=0.1 to 0.25 due to the slight z-shift of the trajectories 
noted above. Just like in the viscous case, we can conclude that 
decreasing shear-thinning and increasing viscoelasticity decrease shear- 
induced diffusion.

4.4.2. Physics of trajectories and phase plot in n-Wi for the viscoelastic 
matrix

To investigate the physics behind the three types of trajectories, 
Fig. 11 compares the streamlines encompassing a single drop for 
different Wi and n values. Fig. 11(a) for a strong viscoelastic case of Wi =
1.2 with no shear-thinning (n=1) shows a large region of spiraling 
streamlines (also seen recently around a sheared soft elastic particle in a 

Fig. 4. Effects of shear-thinning on pair interactions in a viscous matrix: (a) Relative trajectories for Ca= 0.01 showing both passing and reversed trajectories. (b) 
Relative trajectories for Ca = 0.2 showing only passing trajectories; (c) Cross-stream separation relative to its initial value with time for Ca = 0.01 (d) Final cross- 
stream relative to its initial value separations for passing trajectories for different Ca as a function of n.
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viscoelastic medium [75]) that traps a second drop into a tumbling 
trajectory. Introducing shear-thinning at n = 0.1 (Fig. 11b) results in 
reverse streamlines, reducing considerably the region of spiraling 
streamlines and thereby the possibility of a tumbling trajectory, which 
in effect leads to a passing trajectory for these parameter values. As 
shown in our previous article [41] the normal stress differences in the 
viscoelastic medium, specifically the hoop stress around the curved 
streamlines, are what result in the region of spiraling streamlines. 
Therefore, reducing Wi to 0.2 in Figs. 11(c) and (d) drastically reduces 
the region of spiraling streamlines. For the case without shear-thinning 
(Fig. 11c), it leads to a passing trajectory. In Fig. 11(d), the combined 
effect of shear-thinning (n = 0.1) and reduced viscoelasticity generates a 
strong region of reversed streamlines without any spiraling region and 
results in a reversed trajectory. Please note that the results match the 
findings of the experimental observations of pair interactions between 
spheres [20], where reversed trajectories were seen in shear-thinning 
matrices (worm-like micellar solution and a broad-spectrum shear-
thinning elastic polymer solution), but not in constant-viscosity liquids 
(a reference Newtonian fluid and a high elasticity Boger fluid).

Fig. 12 shows all three types of trajectories in a Wi-n phase plot 
obtained by exploring the parameter space by extensive simulation. 
Reversed trajectories are favored by shear-thinning (small n). Tumbling 
trajectories are a result of matrix viscoelasticity giving rise to a large 
region of spiraling streamlines. The phase plot describes a competition 
between the two with reversed trajectories at the lower left corner 
(strong shear-thinning and low viscoelasticity) of the phase plot going 
over to tumbling trajectories at the upper right region (less shear- 
thinning and strong viscoelasticity), separated by a region of passing 
trajectories. As Wi increases, the critical value of n for transition be
tween reversed and passing trajectories decreases, i.e., more shear- 
thinning is warranted to counter the effects of increased viscoelas
ticity. Our exploration of the parameter space has been limited by 
computational resources, keeping the total computational time of the 
simulation within a reasonable limit. We find no reversed trajectories for 
Wi ≥ 0.5 and similarly, no tumbling trajectories Wi ≤ 1.0.

For Wi = 1.1, tumbling occurs only for n ≥ 0.75 with passing tra
jectories below this value. With increasing Wi, the transition from 
tumbling to passing occurs at lower and lower n. For Wi = 1.5, all tra
jectories are tumbling for all n (considered here ≥ 0.1). At Wi = 0.4 and 
below, reversed trajectories appear, but they are absent for n ≥ 0.3. The 
critical value for transitions between reversed and passing trajectories 
remains between 0.25 and 0.3. From the phase plot, we note that 
although the cases of Wi =0.4, n=0.2 and Wi=0.5, n=0.1, present 
passing trajectories, they take an extraordinarily long time—50 inverse 
shear units—when the crossflow separation (Δy/a) remains unchanged 
before a clear preference for one of the trajectories can be identified. 
Choi et al. also saw a similar phenomenon for rigid particles in a 
confined viscoelastic flow in that between the transition from reversed 
to passing trajectories, particles remained at fixed positions [35]. This 
indicates the typical behavior near a transition point defined by a deli
cate balance between the competing dynamics [30].

Fig. 5. Streamlines and pressure around a single drop placed at the center of 
the domain and at Wi=0 (a) n=1, Ca=0.01, (b) n=0.1, Ca=0.01, (c) 
n=0.1, Ca=0.2.

Fig. 6. Phase plot of trajectories as a function of Ca and n.

Fig. 7. Relative trajectories of drops for Ca=0.2, n=0.1 at different λμ.
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4.4.3. Effects of Ca variations
After discussing the drops’ interactions at a low capillary number of 

Ca=0.01, here we briefly consider the effects of Ca variation at a fixed 
Weissenberg number of Wi =1.2. Fig. 13(a) shows that more deformable 
drops (Ca=0.1) result in passing trajectories for all n. Increasing shear- 
thinning increases net cross-stream separation. Fig. 13(b) describes the 
effects of capillary number variation at n=0.75: while the least 
deformable drop (Ca=0.01) results in a tumbling trajectory due to the 
more prominent spiraling streamlines around a single drop (as discussed 
before), higher capillary numbers result in passing trajectories due to the 
increased deformation facilitating sliding of drops.

4.4.4. Effects of initial drop separation
In previous sections, we fixed the initial y separation at Δy0=0.25a. 

In Fig. 14, we briefly examine the effects of varying the initial y sepa
ration at Wi=1.2, Ca=0.01, n=0.75. For smaller initial y separations 
(Δy0=0.125a, 0.25a and 0.75a), drops obtain tumbling trajectories 
because of the region of spiral streamlines trapping the second drop. 
However, when the initial y separation is large enough (Δy0=1a and 
1.25a), the second drop escapes the region of spiral streamlines leading 
to a passing trajectory.

5. Summary

We performed a detailed numerical investigation of the effects of 

Fig. 8. Relative trajectories of drops for Ca=0.01 (a) Wi=0.2 at different n (b) Wi=1.2 at different n.

Fig. 9. Relative trajectories of drops (a) at Ca = 0.01, n = 0.25 for different Wi. (b) Relative position along with drop snapshots at different positions at n=0.25, 
Wi=1.5. Inset of (b) shows the relative trajectories of drops, Δz/a vs. Δx/a.

Fig. 10. Plots of (a) Δy/a with t’ at Ca=0.01, Wi=0.2 at different n. (b) (Δyf -Δy0)/a at Ca=0.01, at different Wi and n.
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matrix shear-thinning on shear-induced pair interactions between two 
equal-sized viscous drops in viscous and viscoelastic media. Note that 
previous studies of pair interactions in a viscoelastic system have been 
primarily restricted to rigid particles in a confined geometry. Here, we 
show that shear-thinning in a viscous or a viscoelastic matrix introduces 
a new reversed trajectory, which was seen before only in the presence of 
confinement or inertia. In the case of a viscous matrix, we see passing 
trajectories encountered in constant viscosity fluid, where the drops 
after interaction pass each other and separate in the extension quadrant, 
experiencing a shift in the cross-stream direction. Increasing shear- 
thinning (power law index n less than 1) eventually leads to a 
reversed trajectory for less deformable drops (small capillary numbers). 
The effects are seen as a result of reversed streamlines observed around a 
single drop in a shear flow in a shear-thinning liquid. We have offered a 
simple explanation for the reversed streamlines in terms of the pressure 
gradient around a drop in the presence of shear-thinning. Simulations 
with varying parameters describe the regions of different trajectories in 

the n-Ca phase plot, with reversed trajectories restricted to small n and 
small Ca.

Extending the investigation to a shear-thinning viscoelastic matrix, 
we observe a third trajectory, tumbling, seen before in our recent study 
of constant viscosity viscoelastic systems [41]. Matrix viscoelasticity 
introduces a region of spiraling streamlines due to the hoop stresses 
along the curved streamlines around a single drop, which eventually 
traps a second drop in a tumbling trajectory. Performing simulations 
varying n and Weissenberg number, we obtain a phase plot in the n-Wi 
space showing reversed trajectories for strong shear-thinning (small n) 
and low viscoelasticity (low Wi) and tumbling trajectories for low 
shear-thinning and strong viscoelasticity, with a region of passing tra
jectories for intermediate values of n and Wi. The study has explored the 
effects of shear-thinning on pair interactions in unconfined shear. It 
observed three different trajectories depending on the parameters 

Fig. 11. Streamlines around a single drop placed at the center of the domain at (a) n=1, Wi=1.2, (b) n=0.1, Wi=1.2, (c) n=1, Wi=0.2, and (d) n=0.1, Wi=0.2.

Fig. 12. Phase plot of trajectories as a function of Wi and n at Ca=0.01.

Fig. 13. Relative trajectories of drops at Wi=1.2 (a) Ca=0.1, at different n (b) n=0.75, at different Ca.

Fig. 14. Relative trajectories of drops at Wi=1.2, Ca=0.01, n=0.75, at 
different Δy0/a.
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defining the underlying physics and offered insights into viscous and 
viscoelastic shear-thinning emulsions.
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