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Abstract 

Acoustic microstreaming due to an oscillating microbubble is analytically investigated to obtain 

the circular streaming motion adjacent to a nearby wall. Classical theory due to Nyborg is carefully 

derived in the radial coordinates. The theory is used to obtain the flow field and the vortical motion   

caused by the microbubble motion. The length of the vertices are decreasing when the microbubble 

is excited at distances close to the rigid wall, while the maximum shear stress is increasing. 
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1. Introduction 

One of the interesting characteristics of sound fields is the steady circulation of fluid particles near 

vibrating elements and bounding walls. It is well known that in addition to the sinusoidal 

movement in fluid particles, sound sources can generate steady vortices and velocity fields in 

which particles circulate steadily (Nyborg 1953, Nyborg 1958). These vortex motions have been 

observed experimentally near oscillating gas bubbles which are resting on a solid surface(Kolb 

and Nyborg 1956). When associated with microbubbles, this small-scale steady streaming flow is 

called microstreaming. In this research, we are studying the microstreaming flow near a plane wall 

analytically. 

When the bubble is pulsating, it generates fluctuations in the flow. The time average of these 

fluctuations usually is not zero creating microstreaming (Riley 2001, Tho, et al. 2007). 

Microstreaming has many applications. Microstreaming can be used in micromixing to generate 

rapid mixing (Liu, et al. 2002, Orbay, et al. 2016). It is shown that bubble induced acoustic 

micromixing reduces the mixing time for a 22-microliter chamber from several hours (for a pure 

diffusion-base mixing) to tens of seconds(Liu, et al. 2002). It is also utilized in microfluidic 

transport to guide solid beads and lipid vesicles in desired direction without microchannels 

(Marmottant, et al. 2006). Microstreaming can also be used in therapeutic and biomedical 

applications. The streaming motion of the bubbles exerts shear stress on the boundaries where 

circulation occurs. It has been shown that the induced shear stress can be exploited in thrombolysis, 

drug delivery and gene therapy. This shear stress is the main mechanism of hemolysis of the red 

blood cells (Rooney 1970). Microstreaming can rupture and increase the permeability of cell 

membranes (sonoporation) in biological tissues for better passage of therapeutic agents across the 

vascular barrier and cell membranes (Fan, et al. 2014, Marmottant and Hilgenfeldt 2003, 

Pommella, et al. 2015). Many different streaming patterns is possible due to pulsating bubble 



(Collis, et al. 2010, Elder 1959, Tho, et al. 2007). Changing the streaming pattern may result in 

improved sonoporation and sonothrombolysis (Collis, et al. 2010).  

The early theory for microstreaming velocity field and the induced shear stress has been proposed 

by Nyborg (Nyborg 1958). Rooney used Nyborg’s theory approximated for pulsating bubbles 

resting on a surface hemispherically to calculate maximum shear stress for hemolysis of red blood 

cells(Rooney 1970). Levin and Bjorno studied the maximum shear stress due to the gas 

microbubbles on biological cells using Nyborg’s theory approximated for hemispherical 

microbubbles resting on the cells (Lewin and Bjo/rno/ 1982). Forbes and O’Brien determined the 

theoretical model of Nyborg for estimating microstreaming shear stress with experiments and 

showed that the theoretical model accurately describes maximum sonoporation activity (Forbes 

and O’Brien Jr 2012). Doinikov applied Nyborg’s theory to find the shear stress on the plane wall 

by spherical oscillation of contrast agent assuming the bubble is detached from the wall (Doinikov 

and Bouakaz 2010). Kimmel have applied the axisymmetric boundary element method to calculate 

the microstreaming shear stress on the plane wall using Nyborg’s theory (Krasovitski and Kimmel 

2004). Wu used Nyborg’s theory to theoretically study the microstreaming shear stress for the 

Optison contrast agent  attached to a wall hemispherical while using Rayleigh-Plesset equation for 

bubble pulsation (Wu, et al. 2002).   

In addition to study the microstreaming shear stress, there are several works studying the 

microstreaming flow field. Wu and Du solved the streaming generated near both coated and 

uncoated microbubble in an ultrasound field analytically assuming the wave length is much greater 

than the bubble radius and showed that the streaming velocity inside the bubble is even much more 

than the streaming velocity in the outside (Liu and Wu 2009, Wu and Du 1997). Doinikov and 

Bouakaz calculated acoustic microstreaming near a gas bubble considering all modes of bubble 

motion without imposing any restriction on the bubble size relative to wave length which would 

otherwise give rise to underestimation of microstreaming near the bubble (Doinikov and Bouakaz 

2010). They also developed a theory for streaming near a bubble in the presence of a distant wall 

showing that presence of wall gives rise to higher acoustic streaming around the bubble (Doinikov 

and Bouakaz 2014). Doinikov and Bouakaz described the microstreaming generated by two 

interacting bubbles and showed that driving the bubbles at near resonance frequencies gives rise 

to higher microstreaming velocity and stresses (Doinikov and Bouakaz 2016). In addition to 

theoretical works to study the microstreaming flow field, there are experimental studies showing 

the flow field around a single and two oscillating bubbles resting on a solid surface (Collis, et al. 

2010, Thameem, et al. 2016, Tho, et al. 2007). 

Microstreaming flow field near pulsating bubble; uncoated or coated; have both been modeled and 

experimentally studied.  But the microstreaming flow filed near a wall has not been looked in detail 

while many researches have studied the shear stress induced by microstreaming on a wall. The aim 

of this study is to show and analyze the microstreaming flow field near a plane rigid wall; assumed 

as the cell membrane; due to spherical pulsation of microbubbles in an ultrasound field to better 

understand microstreaming near surfaces. We have shown the streamlines of microstreaming flow 

near a wall, discussed the reasons for vortex creation, and analyzed the induced shear stress on the 

wall. We have also studied the length of the vortex and the effect of different parameters on the 

vortex length.  

 

 



 

2.  Mathematical formulation 

The theoretical results on microstreaming (Nyborg 1953, Nyborg 1958) were obtained by solving 

the governing equations by a perturbative method:  
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The first order approximation (1)
u solves the linearized equation neglecting the nonlinear advection 

terms and obtains a sinusoidal velocity. At second order, the convective nonlinear term, quadratic 

product of (1)
u , appear as a forcing term, with the equation upon averaging becomes  
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t t tp           u F u u              (2) 

with   and   being the fluid intensity and viscosity. t  is the average over a time period of the 

oscillating excitation. Averaging the quadratic term gives rise to a steady force that drives the 

streaming motion.  Nyborg noted that the formal solution of this problem requires that boundary 

conditions be satisfied on the exact boundary, which is possible only for simple boundaries with 

velocity distributions on them as simple as possible.  For a more general situation, Nyborg sought 

an alternative method. Following an earlier investigation of Schlighting, he made a key observation 

that one does not need the solution for the entire region (with dimension L ), but only in the near 

boundary region (dimension ). With a number of ingenious approximations, Nyborg was able to 

obtain an expression of the streaming motion that depends on the surface values of the potential 

part of the first order velocity. Nyborg’s description is terse and based on a formulation with a 

finite sound speed, and later simplified using “approximate incompressibility” assumption. 

Furthermore, it was solved in Cartesian coordinates with slight generality for slight curvilinearity. 

We feel that a brief description of the mathematical derivation in the radial coordinates under the 

assumption of axisymmetry appropriate for the present problem would be helpful to understand 

several aspects of the perturbative approach.  

A. Acoustic microstreaming:  

The fluid velocity and pressure ( , )tu x and pressure ( , )p tx  solve the Navier Stokes equation:  

21
,

0,

p
t





      



 

u
u u u

u

                           (3) 

with /    being the kinematic viscosity. With the perturbation expansion(1), and using a time 

periodic expression for the first order field  

(1)(1)
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one obtains for the momentum equation at ( )O   
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The equation (4) is solved using a Helmholtz decomposition  
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Note that the generality of the Nyborg formulation (Nyborg 1958) is premised on finding the 

velocity in terms of values of the potential component 
u and its derivative at the boundary. The 

vortical part 
Au satisfies  
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where the sign of h  was chosen for decaying solution of exp( )ihz . The solution has the typical 

structure of Stokes boundary layer for an oscillatory outer driving flow 
u (of an order ~ U  and 

varying in a large scale ~ )L  near a wall with boundary layer thickness 2 / L    .  We seek 

solution ( , )u w in an axisymmetric geometry. Accordingly, the solution of the radial component 

Au is straightforward and chosen to ensure a zero tangential velocity countering u  

ihz

Au u e
  .                 (7) 

It satisfies(6). The axial component Aw is chosen as  
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Due to (5), w
and  are harmonic, and therefore (8) satisfies (6). We note that  
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 
2

2

1 1
0,ihz ihz ihz

A

w w
ru e e e

r r z ih z

 



  
 

     
  

u  

the last term being higher order in the small quantity / L  compared to the first two and therefore 

was neglected here as well as below (effectively  being treated as approximately a constant). The 

velocity 
A u u  however does not satisfy the zero normal velocity condition at 0z   due to Aw . 

Correcting for that a modified total first order velocity is found as  

ˆ , / ,A c z cw w ih    u u u e             (10) 

keeping in mind that the non-decaying 
cw  is only meaningful while considering the velocity field 

in the small boundary layer region. Therefore, one obtains the time periodic first order velocity 

field (superscript (1) indicates the corresponding term with periodic time dependence included). 
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This expression is consistent with Nyborg. At the second order, one observes the forcing term F  

in the right hand side of the average Stokes equation(2). As was noted by Nyborg, quadratic 

product of the irrotational part 
 u  does not contribute to streaming and can balance the 

pressure gradient term as in Bernoulli term 
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reducing (2) into 
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Therefore, the forcing term in the r-direction becomes  
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Noting the order of terms:  
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and neglecting higher order in / L  , we obtain 
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Each term in the right-hand-side is
2( / )O U L . In an effort to express each term in terms of u and 

(1)

ru , following Nyborg, we express the odd term w in (11) as  

 
00 zz

w z
w z ru

z r r



 



   
        

.  

After substituting (11) in  (15) averaging over time, one obtains  
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In the governing equation (13) in the second order, we note that the vertical (z) derivative is larger 

than the transverse (r) derivative by ( / )O L   to obtain  
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Integrating and noting(8), we get 
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as was also found by Nyborg (1958).   

The vertical component of streaming velocity (2)

tw  is obtained by using equation of mass 

conservation and taking into account the no slip condition on the rigid wall: 
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Here z-dependence of 2 /u r  and 2 2 2/u r   are neglected in the boundary layer similar to what 

was assumed in (16).  

The acoustic streaming velocity field is therefore known in terms of the outer irrotational velocity 

field. One can compute the shear stress on the wall:  
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Doinikov and Boukaz described the microstreaming shear stress on the rigid wall assumed as a 

cell membrane due to spherical pulsating bubble detached from the wall (Doinikov and Bouakaz 

2010).  

 



 

B. Potential velocity u due to oscillating bubble above a rigid surface:  

In this research, we studied the microstreaming flow close to the plane rigid wall due to spherical 

pulsation of microbubbles in an ultrasound field. Figure 1 shows the schematic of the problem. 

The effect of the wall has been considered by assuming an image bubble at a distance 2h away 

from the real bubble which satisfies impermeability condition along radial axis. 

 

 
Figure 1. Schematic of the problem 

As mentioned earlier, the streaming velocity can be found by having the local irrotational velocity 

distribution. The velocity potential  of the fluid around the microbubble is: 

 

                             (20) 

 

1S and 2S are the distances from the center of the real and image microbubbles to the desired 

location in the fluid, R and R are the velocity and instant radius of the microbubble.  

The irrotational local velocity  components in the fluid particles in radial and vertical directions 

are as follows: 
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u  and w  are the amplitudes of potential velocity components in radial and vertical directions,  r

and z are the radial and vertical distance of the points in the fluid from origin and h is the initial 

distance of the microbubble center from the wall.  

The velocity R and the instant radius R of the microbubble pulsating near the wall is described 

using the Rayleigh-Plesset type (R-P) equation shown in equation(22). 
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Where, 
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bP is the fluid pressure adjacent to the microbubble, P is the pressure of the fluid at the far field, 

  is the fluid density,  is the fluid viscosity,  is the gas-fluid surface tension, 
0gP  is the initial 

gas pressure inside the microbubble, 0P  is the ambient pressure, exP is the excitation pressure and 

  is the polytropic constant. Note that the effect of the wall has been considered as a pressure 

( , )scP h t scattered from the image bubble located at a distance 2h  from the real bubble. Since the 

microbubble is pulsating with small amplitude, equation (22) can be linearized to give analytical 

expression for the irrotational velocity of fluid particles. 
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C. Linearization and normalizing: 

For small pulsation 0(1 )R R x   of the free bubble at distance h  from the wall, linearizing 

equation (22) in x and non-dimensionalizing t  and 
exP with t t  and 

0ex exP P P   results in the 

non-dimensional equation of damped harmonic oscillator (equation(24)).  
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are the characteristic Reynolds, Euler and Weber number of the microbubble. 
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0  and t  are the linear angular natural frequency and damping term of the microbubble. The 

analytic solution of equation (24) in steady region when the transient region has been subsided is 

as follows: 
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where     
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0 01m tZ          is the non-dimensional absolute value of impedance 

and is the oscillation phase.  

For small pulsation of microbubble, the radial component of the amplitude of linearized non-

dimensional potential velocity 

u and non-dimensional radial streaming velocity (2)
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where 
0r r R  , u  and u  are calculated from (17). 

The linearized form of shear stress (19) in non-dimensional form (with respect to ambient pressure) 

is as follows: 
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3. Results 

A. Microstreaming due to free bubble oscillation: 

The microbubble has been excited with ultrasound wave at excitation frequency exf and excitation 

pressure exP . The initial radius of the microbubble is 0R .  

Figure 2 shows the radial pulsation of the microbubble with non-dimensional time located at

02h R when 85, 0.125, 33  Re Eu We (corresponding to ex ex 0P =100Kpa, f =1.5MHz,R = 3 m

). As it is shown in the steady region, the maximum pulsation amplitude of the microbubble is

00.17R . The same pulsation amplitude is obtained using linearized R-P equation (equation(24)). 

 

Figure 2. The radial oscillation of the free microbubble when 

085, 0.125, 33, 2.0h R   Re Eu We  



As it is shown in equation(2), the temporal average of (1) (1)u u  acts as an external force which 

drives the streaming motion, where (1)
u is the first order sinusoidal velocity which can be written 

as the function of potential velocity (equation(11)). Figure 3 shows the potential velocity 

surrounding the bubble at two different non-dimensional times during microbubble expansion and 

compression. 

 

  
(a) 99t   (b) 100t   

Figure 3. The irrotational velocity around the free microbubble when 085, 0.125, 33, 2.0h R   Re Eu We  

(a) during expansion, (b) during compression 

 

Figure 4 shows the amplitude of the radial component of potential velocity along the rigid wall 

obtained from equation(28). It is shown that for a microbubble with 85, 0.125, 33  Re Eu We

located at 02h R , the amplitude of radial potential velocity on the wall has a maximum peak at

01.41r R . Figure 4 states that 

  u r and hence (1) (1)

tu u r     is positive near the wall for 

radial distances 01.41r R , and it is negative for radial distances 01.41r R . Therefore, the 

direction of the radial external force driving the microstreaming flow (1) (1)

0 tu u     is 

changing at 01.41r R . The change in external force direction pushes the fluid upward (as the flow 

cannot go downward because of the wall) and creates vortical motion.  

To observe the microstreaming flow, figure 5(a) shows the streamlines due to microstreaming near 

the wall for the condition described in figure 3.  



 

Figure 4. The amplitude of radial potential velocity on the rigid wall when

085, 0.125, 33, 2.0h R   Re Eu We  

 

As it is observed in figure 5(a), an axisymmetric vortex is generated near the wall with the length 

of 01.41L R corresponding to the location where 

u is maximum or the location where the 

direction of external force driving streaming flow changes.  Inside the vortex, the flow near the 

wall is directed inward, while it is directed radially outward beyond 01.41r R . Figure 5(b) shows 

the shear stress on the wall due to microstreaming when transient pulsation of microbubble has 

been subsided. As it is expected the sign of the shear stress changes at 01.41r R corresponding to 

the location where the direction of the streaming flow near the wall changes.  

 

 

 

 

 

 

 



 (a) 

 

 (b) 

 
Figure 5. (a) Microstreaming streamlines near the plane rigid wall due to free microbubble, (b) the induced shear 

stress on the wall when 085, 0.125, 33, 2.0h R   Re Eu We  

 

As mentioned above, the length of the vortex can be determined when the direction of radial 

external force    1 1

tu u r     driving the microstreaming is changing corresponding to the 

location where radial potential velocity on the wall is maximum or the location on the wall where 

the shear stress becomes zero. Therefore:  

0

2
,

2












 


z

u L

r h
                                                                                                                   (31) 

where L  is the vortex length. As it is observed in equation(31), for a spherically pulsating bubble, 

the length of the vortex is only dependent on the initial distance of the microbubble from the rigid 

wall h .  

Figure 6(a-b) shows the streamlines near the plane wall due to microstreaming and the induced 

shear stress on the wall when
085, 0.125, 33, 3.0   h RRe Eu We . It is seen that the maximum 

shear stress on the wall decreased as the bubble excited further away from the wall.  



Also the length of the vortex increased to 02.12L R as the microbubble moves away from the 

wall (figure 6(a)). The increase of the length of the vortex can be explained in figure 7 which 

shows the non-dimensional potential velocity amplitude along the radial distance on the wall. 

Comparing figure 7 with figure 4 shows that the maximum amplitude of the potential velocity 

shifts right when the bubble is excited further away from the wall. This shift states that when the 

microbubble is excited further away from the wall, the direction of the radial driving force changes 

at radial distances further far from the origin. 

 

 (a) 
 

 (b) 

 
Figure 6. (a) Microstreaming streamlines near the plane rigid wall due to free microbubble, (b) the induced shear 

stress on the wall when 085, 0.125, 33, 3.0h R   Re Eu We  

            



 

Figure 7. The amplitude of radial potential velocity on the rigid wall when 

085, 0.125, 33, 3.0h R   Re Eu We  

 

B. Effect of translational motion of microbubble on microstreaming: 

The microbubble tends to translate toward the wall due to Bjerkness force when it is pulsating. For 

a microbubble with both pulsation and translation, the velocity potential in the surrounding fluid 

is as follows:  
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                                                            (32) 

where 1  and 2 are shown in figure 1. The amplitude of linearized non-dimensional potential 

velocity in radial direction will be in the following form: 
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where lb is as follows (Doinikov and Bouakaz 2014): 
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The non-dimensional potential velocity in (33) is used to calculate the non-dimensional 

microstreaming velocity (equation(29)). Figure 8 shows the comparison of radial streaming 

velocity at 
00.5r R  for the two cases when the translational motion of the microbubble has been 

considered and ignored. It is observed that for the conditions mentioned in this study, the 

translational motion has no considerable effect in the microstreaming flow, and hence it is 

neglected in our study. 

 

 

Figure 8.  The radial streaming velocity when 085, 0.125, 33, 2.0h R   Re Eu We  

 

C. Microstreaming due to oscillation of coated microbubble: 

C.1. Viscoelastic Strain-softening Exponential Elasticity Model (EEM) for encapsulation: 

To study the microstreaming due to coated microbubbles, we have studied Sonazoid contrast agent. 

Contrast agents have been initially developed for enhancing the contrast of the image in ultrasound 

imaging. Sonazoid contrast agents are gas core microbubbles coated with a layer of lipid to 

stabilize them against early dissolution in the blood stream. To model the coating of these contrast 

agents, we have used an interfacial rheology model called exponential elasticity model 

(EEM)(Paul, et al. 2010), where the coating is assumed to be a viscoelastic interface having 

dilatational viscosity and shell elasticity incorporating the effects of strain softening by letting the 

interfacial elasticity decrease exponentially with increasing surface area. 

Using EEM, the effective interfacial tension would be in the following form: 



(35) 

  eff R and sE  are the effective surface tension and the shell elasticity. 
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sE  are constants dependent to physical properties of the coating. Due to the coating, the fluid 

pressure on the microbubble would be as follows: 
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s  is the dilatational viscosity due to the bubble coating. The characteristic properties of Sonazoid 

according to exponential elasticity model (EEM) are as follows (Katiyar and Sarkar 2011): 

8

0 00.019 , 0.55 , 1.5, 1.2 10s s sN m E N m Ns m         

Substituting bP  from equation (36) in equation (22) gives the modified Rayleigh-Plesset type 

equation for pulsation of coated microbubbles. 

 

C.2 Linearization and normalizing of pulsation of coated microbubble: 

Again, for small pulsations, the Rayleigh-Plesset equation (R-P) can be linearized in x where 

 0 1R R x  to obtain the damped harmonic oscillator. 

For a coated microbubble near a rigid wall, linearizing R-P equation using EEM for coating gives 

the following linear angular natural frequency 
0  and damping term t . Substituting (37) in (27) 

gives the analytic solution of the non-dimensional displacement x of coated microbubble. By 

having x, the non-dimensional streaming velocity and non-dimensional shear stress due to contrast 

microbubble can be calculated analytically through (28)-(30). 
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Figure 9 shows the streamlines of microstreaming flow near the wall due to pulsation of Sonazoid 

located initially at 02.5h R when 85, 0.031, 33, 21, 4    s sRe Eu We Re We  (corresponding to

25 ex ex 0P = Kpa, f =1.5MHz,R = 3 m ). The streamlines look very similar to the case when the 

bubble has no coating. As it is seen in figure 9, the length of the vortex is 01.77R corresponding to 

the vortex length due to free microbubble located at the same distance from the wall (equation  

(31) ). 

 

 

Figure 9.  Streaming velocity near the plane rigid wall due to coated microbubble when 

085, 0.031, 33, 21, 4, 2.5s s h R     Re Eu We Re We  

 

Conclusion 

In this study, the acoustic microstreaming flow near a plane rigid wall has been studied. 

Microbubbles are assumed to pulsate spherically near the wall under the excitation of low 

amplitude ultrasound. It has been shown that an axisymmetric vortex generated near the wall. The 

vortex is being generated due to the change in the direction of microstreaming driving force near 

the wall. Near the wall, the driving force is related to the gradient of the potential velocity of the 

fluid. Potential velocity on the wall has a maximum peak causing the change in the direction of 

microstreaming driving force. The length of the vortex has been shown to depend only on the 

distance of the microbubble from the rigid wall whether the microbubble is free (uncoated) or 

coated.  
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