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Deformation and breakup of a viscoelastic drop in time-dependent 
extensional flows with finite inertia 
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A B S T R A C T   

The dynamics of a viscoelastic drop suspended in a Newtonian matrix are simulated in two time-periodic 
extensional flows, an oscillating extensional flow (OEF) and a rotating extensional flow (REF) at finite inertia. 
The drop deformation is studied by varying the capillary number (Ca), Reynolds number (Re), Strouhal number 
(St), and Weissenberg number (Wi) with the viscosity and the density ratios being restricted to unity. In OEF, the 
drop shows a periodically changing deformation alternating its extension axes in response to the imposed flow. In 
REF, the drop assumes a rotating ellipsoidal shape reaching a steady deformation. Despite their different natures, 
the two flows share an underlying similarity and result in almost an identical maximum drop deformation at the 
same values of the non-dimensional parameters. Due to the finite inertia, the time-periodic forcing leads to a 
resonance response, i.e., a peak in the deformation as a function of St when the forcing frequency matches the 
natural frequency of the system. Variation in viscoelasticity (Wi) gives rise to a non-monotonic trend in defor
mation as well as the phase of the drop response. An ordinary differential equation-based one-dimensional model 
has been used to successfully describe the qualitative trends of drop response in both flows. It further emphasizes 
the common physics underlying the two flows. We also investigate the effects of viscoelasticity on drop breakup 
in a potential vortex, which is a special case of rotating extensional flow with St = 2. Viscoelasticity inhibits drop 
breakup raising the critical capillary number for break up, an effect more pronounced at lower inertia. The 
deformation at the critical capillary number increases with increasing Wi at low Re with opposite variation at 
high Re.   

1. Introduction 

The widespread occurrence of suspensions and emulsions in many 
industrial and natural phenomena such as blood flow, microfluidics, 
paint, food, and polymer processing make their rheological properties 
an important consideration for the scientific community. The overall 
rheology of an emulsion or a suspension is determined by the micro
structure—shape, size, orientation, and material properties of the par
ticles as well as their concentration. Single drop dynamics have 
historically proved seminal in describing the microstructure of an 
emulsion since the pioneering work of Taylor [1,2], also offering valu
able insights into pair [3,4] and multi-particle [5,6] dynamics. The 
research literature on drop dynamics has been largely focused on viscous 
systems [7–10]. Numerical simulations of viscoelastic multiphase sys
tems were attempted starting in the late nineties of the last century [11, 
12]. Early investigations were mostly in steady flows, specifically plane 
shear, and quite a few were restricted to two dimensions [13–15]. The 

flows with inertia were rarely studied. Here, we explore the unsteady 
dynamics of a viscoelastic drop subjected to time-periodic extensional 
flows in the presence of inertia. 

Viscoelasticity gives rise to several interesting phenomena such as 
rod-climbing, die swell, and tube-less siphon effects [16]. Unlike their 
viscous counterparts, there is insufficient intuition about viscoelastic 
flows with many interesting observations that remain poorly explained. 
For example, there were contradictory findings as to whether matrix 
viscoelasticity increases or decreases drop deformation in shear 
[17–19], which was later explained by numerical simulations [13,20]. 
The behavior is shown to be non-monotonic [20]: increasing visco
elasticity decreases drop inclination away from the extensional axis 
retarding deformation, but a further increase of viscoelasticity results in 
a strong extensional flow at drop tips enhancing deformation. Using a 
computer-controlled four-roll mill Milliken and Leal [21] studied the 
deformation and break-up of viscoelastic drops and characterized the 
differences observed for Newtonian and viscoelastic drops. Hsu and Leal 
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[22] experimentally studied the shape evolution of the drop in steady 
planar extension and the subsequent relaxation dynamics. Ramaswamy 
and Leal [11,23] numerically simulated a V/VE (i.e., a viscous drop in a 
viscoelastic medium) as well as a VE/V case in uniaxial extension using a 
FENE-CR model of viscoelasticity. They showed that the drop defor
mation is determined by a balance between the pressure, viscous, and 
polymeric stresses obtaining enhanced deformation in a V/VE system 
compared to a V/V case, but a viscoelastic drop could have lower or 
higher deformation than a viscous drop in a viscous medium. Li and 
Sundararaj [24] found that viscoelastic (Boger fluid) drop breakup in a 
Newtonian (Poly-dimethylsiloxane) matrix in simple shear depends on 
drop size: a flow direction breakup for larger drops and vorticity di
rection breakup for smaller ones. 

Our group has numerically simulated the deformation and breakup 
of an Oldroyd-B drop in a Newtonian matrix, i.e. a VE/V [25] as well as a 
V/VE [20] case in steady shear. We found a monotonically decreasing 
deformation with increasing viscoelasticity in the first case due to a 
retarding effect of the drop viscoelasticity but a nonmonotonic response 
(noted above) in the other. The critical capillary number for breakup 
mimics the deformation trends. The VE/V case, however, showed non
monotonicity for high viscosity ratios because of again increasing 
alignment with the flow [26]. Verhulst et al. [27,28] performed both 
experiments and numerical simulations to conclude that drop defor
mation decreases with matrix viscoelasticity but is hardly affected by 
drop viscoelasticity. A recent detailed Lattice Boltzmann method study 
by Wang et al. [29] of an Oldroyd-B drop in a Newtonian matrix found 
results similar to ours [25,26]. 

Locally a general flow is neither pure shear nor extension, and it is 
time-dependent. For instance, turbulent flows locally offer oscillating 
flow fields due to circulation and eddies of all possible scales and fre
quencies making time-periodic flows an important model system for 
studying drop dynamics [30,31]. The material response in extension can 
be significantly different from that in simple shear even for purely 
Newtonian cases. Taylor observed that the critical Ca for drop breakup is 
much higher in a shear flow than in an extensional flow, i.e., drops break 
up more easily in extension than in shear. Hopper et al. [32] showed that 
the transient behavior of viscous and viscoelastic drops in uniaxial 
extensional flow is noticeably different. We have previously investigated 
the dynamics of drops in periodic extensional flows for purely Newto
nian cases [31,33–35], uncovering atypical behaviors such as a negative 
normal stress elasticity in extension [34] at finite inertia. 

As a model system, we chose here to focus on time-periodic exten
sional flows for their influence on a viscoelastic drop. In contrast to the 
steady case, the axis of extension rotates resulting in a competition be
tween flow-induced stretching and interfacial tension [31]. Two 
different flows–oscillating extensional flow (OEF) and rotating exten
sional flow (REF)–are considered [30,31,33–35]. An OEF can be 
generated experimentally in a four-roll mill [36–38]. An REF is harder to 
generate experimentally, but it is a generalization of the local flow at a 
material point moving in a potential vortex, which was originally pro
posed Deiber and Schowalter [39] as a non-viscometric flow for 
measuring rheological response. Even though the flows are different, 
OEF and REF have been shown to generate similar responses from drops 
[30]. Also, note that recent studies [40–42] attempted to infer visco
elastic material properties from the oscillation dynamics of viscoelastic 
drops. We have previously performed a preliminary two-dimensional 
simulation of a Maxwell drop in periodic extensional flows [30]. The 
restriction to two-dimensional computation severely limited its value. 
Here, it is extended to three dimensions choosing a more realistic FENE 
(finite extensible nonlinear elastic) model for the viscoelasticity. We also 
study possible drop breakups not considered in the previous 
two-dimensional study. 

2. Governing equations and numerical method 

A three-dimensional front-tracking finite difference method [43,44] 

is used to solve the multiphase system containing a drop of one visco
elastic liquid suspended in another viscous liquid. We have used this 
method to study various problems involving viscous [31,33–35,45–49] 
and viscoelastic [20,25,26,50–54] fluids. The theoretical basis of the 
model and the details of the numerical implementation have been pre
sented in detail in previous articles [53]. The multiphase flow problem is 
recast as a single fluid with spatially varying fluid properties. The 
interface is tracked explicitly using interconnected Lagrangian markers. 
The flow in the entire domain is governed by the incompressible 
Navier-Stokes equations: 

∇⋅u = 0, (1)  

∂(ρu)
∂t

+∇⋅(ρuu) =∇⋅τ −
∫

∂B

dxBκnΓδ(x − xB). (2) 

The (spatially varying) density is denoted by ρ, and the velocity 
vector field is denoted by u. Γ is the coefficient of interfacial tension, κ is 
the mean curvature of the interface, and n is the unit vector locally 
perpendicular to the drop interface ∂B. δ(x) is the Dirac delta function. 
The normal stress jump at the interface is implemented as a singular 
force term through the integral involving the delta function at the drop 
interface in the momentum equation [43,55]. The FENE-CR (Finite 
Extensible Non-linear Elastic-Chilcott and Rallison) [56] equation is 
used to model the viscoelasticity leading to the total stress comprised of 
the pressure, polymeric stress, and viscous stress as: 

τ = − pI + Tp + Tu, Tu = μsD,D = ∇u + (∇u)T
, (3)  

∂A
∂t

+ u⋅∇A = ∇u⋅A + A⋅(∇u)T
−

f
tVE

(A − I), (4)  

Tp =

(μpf
tVE

)

(A − I),f =
L2

L2 − tr(A)
, (5) 

Here, the superscript ̀ T’ denotes the transpose of a tensor, and tr(⋅) is 
the trace operator. μs is the solvent viscosity in the non-Newtonian phase 
and the usual viscosity in the Newtonian phase. The polymeric viscosity 
of the viscoelastic fluid is denoted by μp. The other parameters in the 
FENE-CR model are the relaxation time (tVE) and the limiting length (L). 
As in our previous publications we use a modified version of the FENE- 
CR (FENE-MCR) model, used widely in numerical simulations of visco
elastic flows [57–62]. The simplification executed in the FENE-MCR 

Fig. 1. The computational domain with the drop in the middle, with vectors 
showing a planar extensional velocity field. 
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numerical algorithm and its validity have been described in detail in our 
previous publications [4,53,54,63]. The governing equations are dis
cretized and solved using a finite difference method. 

The drop is suspended at the center of a computational box of size 
(10R,10R,5R) where `R’ is the drop radius (Fig. 1). The domain is dis
cretized into a uniform 96× 96× 48grid. The interface is represented by 
piecewise linear unstructured triangular elements, separate from the 
underlying three-dimensional grid. The nominal edge length of the front 
mesh is kept at ~0.8 times the length of a grid segment by an adaptive 
regridding. Detailed studies performed previously have shown that this 
level of discretization is adequate for an accurate solution for the present 
conditions [20,25,26,50–53,63]. 

3. Problem setup 

Here we investigated a drop deforming in two time-periodic flows, a 
rotating extensional flow and an oscillating extensional flow. A rotating 
extensional flow (REF) is a planar extension with rotating axes of 
extension [30]: 

uRE = γ̇

⎛

⎝
sinωt − cosωt 0
− cosωt − sinωt 0

0 0 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠. (6) 

An oscillating extensional flow (OEF), on the other hand, has the axes 
fixed but the directions of extension and contraction alternate [30]: 

uOE = − γ̇cosωt

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠. (7) 

There are two notable differences in the flows. First, OEF (as noted 
before realizable in a four-roll mill) has an instant of zero velocity in 
each period (whenever cosωt is zero), when the velocity changes sign. 
REF in contrast has a constant non-zero magnitude of velocity in the 
entire period. Second, in REF the drop stretches in all directions in the 
plane as the flow axis rotates, whereas in OEF the drop stretches in the 
same two directions (the flows can be seen in Figs. 3 and 4 the Results 
section). We simulate these flows by applying the velocities (6) and (7) 
at the boundary of the domain as boundary conditions for the velocity in 
the x and y directions. The z-direction boundary is taken to be periodic. 
The problem is non-dimensionalized using drop radius, R, as the length 
scale and inverse of strain-rate, γ̇− 1, as the time scale resulting in the 
non-dimensional parameters: Reynolds number Re = ρmγ̇R2 /μm, 
Capillary number Ca = μm γ̇R/σ, Weissenberg number, Wi = tVE γ̇, vis
cosity ratio λμ = μd/μm, density ratio λρ = ρd/ρm, the ratio of polymeric 
to total viscosity inside the drop,β = μp/μd = μp/(μp +μs) of the drop, and 
Strouhal number St = ω/γ̇. ω is the angular/circular frequency. The 
subscripts d and m refer to the drop and matrix respectively. μs is the 

solvent viscosity inside the drop. For a drop of alcohol insoluble in water 
(σ, 1–10 dynes cm− 1 ([64] p. 17), of radius 100 µm with a shear rate 100 
s− 1, one obtains Re = 1, Ca ~0.01–0.001 and St = 2–10. For the results 
presented here, we have restrictedλμ and λρfixed at unity, andβ at 0.5. 

4. A one-dimensional model for drop response 

While the deformation of a drop in a time-periodic velocity field is a 
complex multiphase flow governed by PDEs (1)–(5), we have previously 
shown that an ordinary differential equation (ODE) model is useful in 
understanding the observed dynamics behaviors in the linear limit [30, 
65]. Even though the two flows considered here, REF and OEF, are very 
different, their time-periodic nature underscores an underlying sym
metry brought out by the single simplified ODE model for both. In our 
previous work, we used a model appropriate for an upper-convected 
Maxwell (UCM) model of drop viscoelasticity. Here, we extend it to a 
linearized Oldroyd model appropriate for the FENE-MCR model of the 
viscoelasticity in the simulation (Fig. 2). It is used to explain the simu
lation results. A drop of radius, R̂, subjected to an extensional flow is 

considered to be a driven damped spring-mass system with mass ρ̂ R̂
3
, 

damping coefficient μ̂ R̂, and spring stiffness σ̂(coefficient of interfacial 
tension). The parameters associated with the ODE model are distin
guished with the hat (^) symbol. For a forcing flow G0g(t),g(t) =

exp(iŜtt), the deformation of such a drop is given by 

ρ̂ R̂
3
Ẍ + μ̂ R̂Ẋ + σ̂X = μ̂ R̂G0g(t) + ρ̂ R̂

3
G0ġ(t),

withẊ(0) = G0g(0),X(0) = 0,
(8)  

as the initial conditions. Note that X has a dimension of length and is 
scaled by R̂. The time is scaled by R̂/G0. The ODE model Eq. (8) is 
similar to the one in our previous article [66]. The first term represents 
inertia, the second a viscous response, and the third one is resistance due 
to interfacial tension. On the left-hand side, the forcing terms are 
collected, the first one corresponding to the viscous stressμγ̇arising from 
the imposed flow. The second forcing term arises from the pressure (a 
time-dependent velocity gives rise to pressure ρ∂u/∂t ∼ ∇p). To account 
for the viscosity and density of both the drop and the surrounding fluid, 
we assume an equal contribution from the drop and the surrounding 
fluid to our ODE model, replacing μ̂ by (μ̂d + μ̂m)/2and ρ̂ by (ρ̂d +

ρ̂m)/2. Upon non-dimensionalization, it results in 
(

1 + λ̂ρ

2

)

R̂eẌ +

(
1 + λ̂μ

2

)

Ẋ +
1

Ĉa
X = g(t) + R̂eġ(t), (9)  

whereR̂e = ρmR̂G0/μ̂m, Ĉa = μ̂mG0/σ̂. For a viscoelastic drop, the stress 
is given by Eqs. (4) and (5). Linearization and scaling of the viscoelastic 
constitutive relation (Eqs. (4) and (5)) to a linearized Oldroyd-B type 
relation, we get the polymeric contribution to force (T̂

p
) as 

Ŵi
∂T̂

p

∂t
+ T̂

p
= μ̂p D̂, or T̂

p
=

μ̂p

1 + iŴ i Ŝt
D̂, (10)  

where a time-periodic solution T̂
p
∼ e(iŜtt) is assumed. The total force (T̂)

becomes 

T̂ =
(

μ̂s +
μ̂p

1 + iŴ i Ŝt

)
D̂ or T̂ =

(

1 − β̂ +
β̂

1 + iŴ i Ŝt

)

μ̂d D̂ = μ̂eff D̂ (11)  

where β̂ = μ̂p/μ̂d = μ̂p/(μ̂p + μ̂s). β̂ = 1 corresponds to an upper 
convective Maxwell model (UCM) used in our prior 2D investigation 
[30] For the ODE model, Eq. (11) can be interpreted to be the consti
tutive equation for the viscoelastic drop, with an effective complex 
viscosity μ̂eff and substituted in Eq. (9) to obtain the final equation for 

the model problem. For a time-periodic solution X = X̃e(iŜtt), one finds 

Fig. 2. A sketch of the ODE model for the drop deformation. The viscosity in 
this model comes from (1) the surrounding fluid and (2) an Oldroyd-B element 
for the drop. 
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X̃ =
1 + iR̂eŜt

− 1
2 (1 + λρ)R̂eŜt2 + i

2Ŝt
[
1 + λμ

(
1 − β̂ + β̂

1+îS tŴ i

)]
+ Ĉa− 1  

which for density and viscosity matched system (λ̂μ = λ̂ρ = 1) results in 

X̃ =
1 + iR̂eŜt

1
2 iŜt

(
2 − β̂ + β̂

1+îStŴ i

)
− R̂eŜt2 + Ĉa− 1

(12) 

For a viscous case (β̂→0) it reduces to 

X̃Newtonian =
1 + iR̂eŜt

iŜt − R̂eŜt2 + Ĉa− 1
(13) 

On the other hand, for a Stokes flow (R̂e→0) situation, it reduces to 

X̃ =
1

1
2 iŜt

(
2 − β̂ + β̂

1+îS tŴ i

)
+ Ĉa− 1 

We compute the amplitude and phase of this surrogate response 
function to understand the simulated dynamics of a drop. 

Fig. 3. Drop deformation and velocity field in the central xy-plane for OEF at different instances in one time period for Re = 1.0, St = 2π, Wi = 0.2, and Ca = 0.4.  

Fig. 4. Drop deformation and velocity field in the central xy-plane for REF at different instances in one time period for Re = 1.0,St = 2π, Wi = 0.2, and Ca = 0.4. Note 
that the drop is not `tumbling.’ The deformation of the drop (the long axis) lags the forcing flow. 
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5. Results 

5.1. Drop shapes 

In the first two sections, we restricted the parameter range to obtain a 
bounded drop shape. Note that the periodic forcing increases the critical 
capillary number for breakup compared to the steady extension. Fig. 3 
shows the velocity vectors and drop shape at various times within one 
period (T) after a periodic steady state is reached in an OEF for the case 
of Re = 1.0, Ca = 0.4, St = 2π, and Wi = 0.2 as a typical case. The drop 
follows the time-periodic extension like the case of a viscous drop [33]. 
For the same parameter set, Fig 4 shows the corresponding case of a drop 
in an REF. The deformation of the drop follows the flow with a phase 
lag—the major axis of the drop trails the extension direction. As is well 
recorded in a shear flow, the drop obtained an approximately ellipsoidal 
shape for moderate deformations [67]. The drop shape can be described 
in terms of the three axes of the ellipsoid—the maximum L and the 
minimum B distances of the surface of the drop from the centroid, and 
the half-width W in the z-direction. L and B always lie on the plane of 
extension for a viscous drop [25]. The drop axes are plotted against time 
in Fig. 5 (a) and (b). For an OEF, starting from a spherical shape, the 
drop reaches a periodic steady state, with L (B) reaching a maximum 
(minimum) twice in each period. There is a small variation in W indi
cating that the drop is not deforming much in the z-direction, similar to 
the case of a viscous drop [33]. In contrast, for REF all three axes reach 
steady values indicating little change in shape but a tumbling shape 
(Fig. 4). 

Fig. 5(c) plots Taylor’s deformation parameter [2] D = (L − B)/(L +
B) to quantify the drop deformation. Like in Fig. 5(a), D has two maxima 
in each period in an OEF and a steady value in REF with slight oscilla
tions (~ 2% of the mean value). 

5.2. Drop response 

The maximum deformation Dmax, after a periodic steady state is 
reached, is plotted against Wi in Fig. 6(a) for St = 2π, Ca = 0.125 and 
different Re. Although OEF and REF at the outset are different imposed 
flows—one periodically extending and contracting the drop and the 
other rotating—there is an underlying similarity [30,65,66]. As a result, 
the drop response results in similar values of deformation for both flows 
as a function of Wi—almost identical for the lowest Re = 0.1 and 
differing the most for the highest Re = 10. Note the maximum defor
mation in OEF reaching the steady deformation value in REF in Fig. 5(c). 
Unlike REF, in OEF the axes of stretching and contraction alternate 
leading to undulation in deformation and, therefore, a lower response, 
as we can see in Fig. 6(a). One can anticipate that REF will promote drop 
breakup for low values of rotation, i.e., smaller St values. The effect of Wi 
on drop deformation is quite complex and involves a delicate balance 

between inertia, stretching, rotation, and viscoelastic relaxation time. 
Depending on which of the terms dominates, the effect of Wi on drop 
deformation can be completely different as can be seen by different 
trends for the three Re values. The effect of Wi variation is more 
prominent at lower inertia (compare Re = 0.1, 1.0 against Re = 10). 

Fig. 6(b) shows the response of the ODE model for the same cases, 
noting that the same model captures both two periodic flows. The ODE 
model, due to the severe dimensionality reduction and its linear nature, 
cannot be expected to offer a quantitative match with the actual results. 
However, as a proxy for the deformation, it approximately matches the 
trends with Re and Wi. Specifically, it captures the Re = 0.1 quite well. 
For Re = 10 (Fig. 6a), note that the REF and OEF differ the most due to 
higher deformation for REF and, therefore, the increasing nonlinear 
effects there are beyond the capabilities of the periodic linearized ODE 
model which doesn’t differentiate between the two. Note that the term 
due to viscoelasticity (12) contributes to both the real and imaginary 
parts when compared to a purely Newtonian case. Fig. 6(c) and (d) show 
the same cases for a higher St (=4π). Eq. (12) shows that with increasing 
inertia, i.e., Re increasing, the Wi dependence wanes, as we see also in 
the simulation results (Fig. 6(a) and (c)). 

As an oscillating system at finite inertia, the drop response shows a 
phase difference with the excitation, as can be assessed from 
Fig. 3—when the imposed flow momentarily vanishes as it changes from 
extension to a contraction in one of its axes, the drop deformation is not 
zero. This is more apparent in Fig. 4, where the long axis of the drop lags 
the extension direction of the flow. In the case of oscillating extensional 
flow, this phase difference can be obtained from the deformation 
parameter D vs. time data. The same method does not work for REF 
because D may be constant in time. Here, it can be found by calculating 
the angle between the extension direction of the flow and the orientation 
of the long axis of the drop. 

The phases are plotted in Fig 6(e) for both OEF and REF for different 
Re values and the two St’s. Fig. 6(f) plots the corresponding phase lag 
predicted by the ODE model, showing a good qualitative agreement with 
the computational results in Fig. 6(e). In a finite inertia system, there is a 
sharp change in the phase lag with changing St near the resonance. The 
ODE model is nevertheless able to capture the variation of phase with 
Wi. Phase shows a non-monotonic response with Wi. Phase lag is higher 
at higher Strouhal numbers (Fig. 6e). Increase in Strouhal number in
creases the inertia term in the ODE model. As a result, at higher Strouhal 
numbers the phase lag between successive Re (0.1, 1.0, 10) is higher. A 
close observation of Fig. 6(c) and (e) would reveal that at St = 4π drop 
deformation and phase have a close relationship between them with 
stronger effects at lower inertia (Re = 0.1,1.0) than at the higher value of 
Re = 10. In the range, Wi = 0.1–1, where the drop is more in phase with 
the imposed flow drop, deformation shows higher values. 

Fig. 5. Evolution of the three axes of the drop with time in OEF (a) and REF (b). (c) Evolution of drop deformation with time in both OEF and REF. All computations 
are for Re = 1, St = 2π, Wi = 0.2, Ca = 0.4. 
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Fig. 6. (a) & (b) Variation of Dmax (simulation) and |X|(ODE model) with Wi for different Re at Ca = 0.125, St = 2π in OEF and REF. (c) & (d) The same for 
Ca = 0.125, St = 4π. (e) & (f) Phase lag between the drop deformation and imposed strain rate vs. Wi for different Re at Ca = 0.125, St = 4π (Inset shows the same for 
Ca = 0.125, St = 2π). 
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5.3. Resonance 

Earlier work on Newtonian drops has shown that resonance can lead 
to breakups in a potential vortex at strain rates lower than those required 
for a steady case [31]. We see a similar tendency here for the viscoelastic 

case. In this section, we look at the effect of the forcing frequency 
(Strouhal number) on the drop deformation for different Wi’s. For low 
inertia (Re = 0.1) and Ca = 0.1, greater than the critical value for steady 
extension breakup (Bentley and Leal [68] experimentally 
foundCacr ≈ 0.13), we obtained responses shown in Fig. 7. In contrast to 

Fig. 7. Deformation vs. St for different Wi for Re = 0.1 and Ca = 0.1 in OEF and REF from computation (a) and from ODE (b).  

Fig. 8. Deformation vs. St for different Wi at Re = 1.0 and Ca = 0.02 in OEF and REF from DNS (a) and ODE model (b). Figure (b) inset shows detail near the peak. 
Phase lag vs. St for the same cases from DNS (c) and ODE model (d). 
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the ODE model results shown in Fig. 7(b), the numerically computed 
deformation doesn’t show a resonance peak. It is unbounded at lower 
values of St as the drop stretches for a longer time in one period and 
breaks up. The ODE being a linear small deformation model cannot take 
this effect into account. Post-resonance for the higher St values, the ODE 
model response matches approximately with the computational results. 

In Fig. 8(a) and (b), maximum deformation is plotted against St for 
different Wi at Re = 1.0 and Ca = 0.02, a value lower than the critical 
Capillary number for steady flow break up. When there is sufficient 
inertia we see a resonance response from the 3D simulation, which 
matches the prediction of the ODE model. As Wi is increased, we see 
increased deformation near the peak, but there is no change in the 
location of the peak in both the simulation and the model. The resonance 
frequency is not affected by the Weissenberg number in either case. At 
lower St, below the resonance, Dmax decreases slightly with the increase 
of Wi whereas at higher St, Dmax increases with the increase of Wi. 
Depending on the relaxation time, it takes a certain amount of time to 
develop the viscoelastic stresses inside the drop to inhibit drop defor
mation. Although at lower St the drop gets sufficient time to stretch, the 
viscoelastic stresses also can adequately develop to hinder drop defor
mation. At higher Strouhal numbers, a drop does not get a sufficient 
amount of time to develop the viscoelastic stresses and shows higher 

deformation with the increase of Wi due to an initial overshoot. The 
phase behavior is shown in Fig. 8(c) and (d) with a good match by the 
ODE model. For lower St, below the resonance frequency, one sees a 
negative phase, indicating the drop response lagging the forcing flow, 
whereas, above the resonance frequency, the phase is positive as is ex
pected in such a system with inertia, approaching π/2 for large St(also 
seen in Eq. (12)). Note that such a phase advance response gives rise to 
unusual behaviors such as negative normal stress elasticity in oscillatory 
extensional rheology of a viscous emulsion [34]. 

Viscoelasticity with a relaxation time λ in the drop phase introduces a 
shear modulus of elasticity G = μd/λ. In the presence of inertia, shear 
elasticity gives rise to the possibility of shear waves propagating inside 
the drop with a shear wave velocity cs =

̅̅̅̅̅̅̅̅̅̅̅
G/ρd

√
, i.e., a wavelength of 

lw = 2πcs/ω, or upon nondimensionalization, lw/a = (2π /St)(λ /λρ)/
̅̅̅̅̅̅̅̅̅̅̅̅
ReWi

√
. Similar to normal modes in an oscillating string, the wave effect 

is expected to be dominant for lw/a ∼ O(1), when there could be internal 
resonances of the shear wave system affecting the drop response. These 
effects intrinsic to an extended medium are not accounted for in the ODE 
model possibly explaining the observed differences between the simu
lated response and that of the ODE model. 

5.4. Drop breakup 

With the extension axis rotating in REF, the drop doesn’t experience 
extension at the same point on the drop interface for a long time. One 
can therefore expect that the drop breakup will be inhibited in a rotating 
extensional flow. Here we briefly consider viscoelastic effects on drop 
breakup in a potential vortex which is a special case of REF with St = 2 
and is readily realizable. We plot the steady state drop deformation in 
Fig. 9 showing its increase with both Re and Ca (inset), as can be ex
pected. In both cases, viscoelasticity reduces drop deformation as was 
also seen in steady shear [25]. However, in the presence of periodic 
forcing, the dynamics are governed by the subtle balance between 
interfacial tension, polymeric stresses, and inertia. For a particular set of 
Re and Wi, there exists a critical Ca number above which a drop breaks 
up. However, computationally finding Cacr poses a challenge as has been 
noted in our previous studies involving breakup [20,25,31] due to its 
sensitivity to grid resolution [31]. Here, lower bounds (upper bounds) 
were achieved by decreasing (increasing) Ca until the drop shows 
bounded (unbounded) deformation for five different progressively 
refined grid resolutions considered [31]. 

Fig. 10(a) and (b) show the effect of viscoelasticity on Cacr at Re = 0.1 
and Re = 10.0. Below the lower bound (the curve) the drops remain 
bounded for all resolutions considered whereas above the upper bound, 

Fig. 9. Viscoelastic drop deformation at Ca = 0.2 for different Reynolds 
numbers in a potential vortex (St = 2). Inset shows deformation at Re = 10 for 
different Ca in a potential vortex (St = 2). 

Fig. 10. (a) Shows critical capillary number at Re = 0.1, inset shows corresponding drop shapes above and below critical condition at Wi = 1.5, St = 2 (b) shows the 
critical capillary number at Re = 10.0, inset shows corresponding drop shapes above and below Ca critical at Wi = 1.5, St = 2. 
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all resolutions led to unbounded deformation. At, lower inertia, Cacr 
increases with Wi indicating that viscoelasticity inhibits drop breakup. A 
viscoelastic drop deforms into a slender drop before breaking up at 
lower Re (Fig. 10(a) inset). In contrast, at higher inertia, Cacr doesn’t 
change with Wi (at least the range of Wi that has been considered for this 
study) as drop deformation and breakup are primarily dominated by 
inertia (Fig. 10b). At higher inertia a viscoelastic drop forms a dumbbell 
shape (Fig. 10(b) inset)) before breaking up. 

Fig. 11(a) and (b) show the effect of viscoelasticity on Cacr and 
corresponding Dcr at different Re. For all Wi, Cacr decreases with 
increasing inertia (Fig. 11a). Viscoelasticity increases Cacr hindering 
breakup for each Re, the effects diminishing with increasing Re. How
ever, the critical deformation Dcr at that capillary number shows an 
increase with increasing viscoelasticity, i.e., even a more deformed drop 
at this higher Ca, does not break up due to the material elasticity aiding 
the interfacial tension. On the other hand, at higher Re, inertia domi
nates drop deformation and breakup indicating very little effects of Wi 
on Cacr (Fig. 11a). Correspondingly, Dcr decreases with the increasing Wi 
at higher inertia due to the inhibitive effect of the drop phase visco
elasticity on deformation at the same Ca. (also see Fig. 9). 

6. Conclusion 

The deformation and breakup of a viscoelastic (FENE-MCR) drop in 
two different time-periodic extensional flows have been numerically 
simulated to elucidate complex dynamics governed by the subtle 
competition between the periodicity, inertia, interfacial tension, and 
viscoelasticity. A second-order ODE model was shown to at least qual
itatively capture the variation trends of drop deformation and the phase 
lag of its response. We also simulated drop breakup to show that 
viscoelasticity inhibits drop breakup by increasing the critical capillary 
number for breakup. At lower inertia, a drop deforms into a slender drop 
before breakup whereas at higher inertia it assumes a dumbbell shape. 
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