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Abstract

The rheology of a dilute emulsion of viscous drops in an oscillating extensional flow is investigated. Deforming drop shape is computed
using a front tracking finite difference method. Excess stresses due to drops are determined using Bachelor’'s formula neglecting drop—drop
interactions. We present and discuss the relations between the excess stress and the applied strain rate. We explore the linear extension:
rheology by computing extensional storage and loss moduli. The effects of frequency and surface tension variations are discussed and
compared with analytical models of Oldroyd and Yu and Bousmina. We find that the nature of the excess interfacial stress depends on the
relative magnitudes of the time period of oscillation and the relaxation time of the droplet. The excess stress is predominantly elastic (viscous)
if the period is much smaller (larger) than the relaxation time. These phenomena are explained using the detail drop dynamics.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Taylor[7] performed the pioneering experimental investi-
gation of deforming drops, and developed an analytical theory
The immiscible liquid-liquid system in the form of emul-  using Lamb’s Stokes solution. The subsequent higher order
sions or blends has important applications in numerous chem-analytical investigations were restricted to nearly spherical
ical industries. In industrial flows of emulsions, suspended [8-11] or slendef{12—14] drop shapes (also s¢&5] for a
drops undergo continuous change of shape including coa-review). Doi and Ohta presented a coarse grain theory of
lescence and breakup, contributing in turn to time-dependentstresses in a viscosity matched emulsj@6]. They used
stresses for the overall flow. The co-evolving morphology and a morphological quantity—interface tensor—introduced by
rheological response are the fundamental focus of emulsionBatchelor to compute excess stresses due to interfacial ten-
researclpl]. Till date, most deformation studies have beenre- sion atthe phase bounddfy—19] The theory is appropriate
stricted to steady shear and extension. Rheological responséor describing arbitrary interfacial morphology. However, due
for emulsion has been computed mostly for steady shear withto lack of an internal length scale, it gave erroneous results for
a few exceptions of oscillatory shg&r5]. However, typical emulsion of droplets. Various remedig®—-22] have been
industrial flows are far more complex, with large fluctuations, suggested assuming spherical and ellipsoidal drop shapes.
and spatial variations, that can only be represented numeri-Using ellipsoidal shape assumption, Maffettone and Minale
cally. In this paper, we report a numerical investigation of developed a phenomenological tensor model for shape evo-
rheology in a time-dependent flow, viz., oscillating planar lution of drops in arbitrary linear flonwf23]. The model has
extensional flow. This flow is realizable in a four-roll mill  been experimentally validated for moderate drop deforma-
[6], and can offer important rheolgical insights, as will be tion [24,25] The connection of the drop morphology with
seen here. rheology was developed by Jansseune gRél27] Wetzel
and Tucker proposed two exact tensor formulatif2829]
* Corresponding author. Tel.: +1 302 831 0149; fax: +1 302 831 3619.  T0r the affine deformation of ellipsoidal drops. They noted
E-mail addresssarkar@me.udel.edu (K. Sarkar). thatin a linear flow field, the drop shape is exactly ellipsoidal
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in the absence of interfacial tension. The theory was extended

to approximately account for finite interfacial tension using /
both small-deformation and slender-body analy3¢. Wu
etal.[31] and Yu and Bousmin@2] combined the ellipsoidal
drop models with boundary integrals in order to find a more
accurate surface velocity or velocity gradient.

Numerical simulations eliminate any restriction on drop
shapes. Large deformation with non-ellipsoidal shape can be
treated without using any approximation. Boundary element
method (BEM) has been used to study arbitrary deformation
including breakug33,34] and strongly interacting drops in
concentrated emulsiofi35,36]in a Stokes flow. The flow at
finite Reynolds number are computed by a number of direct
numerical simulations (DNS) such as volume of fluid (VOF)
[37], level set method (LSM)38] and front tracking method
[39]. With advancing computing power, DNS is becoming
a viable tool for simulation of multi-drop morphology, and
direct computation of rheological response.

Sarkar and Schowaltgt0,41]applied front tracking DNS
to simulate deformation of a two-dimensional viscous drop in
time-periodic extensional flows. The method was extended to (@)
viscoelastic droppt2]. Three-dimensional drop deformation
in an oscillating extensional flow at finite Reynolds number
has recently been comput@tB], exploring drop behaviors
in detail. In this paper, we use the same simulation technique
at a Reynolds numbeRe=0.1 (as a representative of Stokes
flow; the code can handle only non-zero Reynolds number
cases) to obtain the rheological response of a dilute emula-
tion in an oscillating extensional flow. Both drop and contin-
uous phases are Newtonian. For brevity, we present results
only for viscosity matched cases, and concentrate on the non-
Newtonian response of the emulsion due to the presence of
interfacial tension.

In the following, mathematical formulation of the drop
problem and its numerical implementation are briefly dis-
cussed in SectioB. The expressions for stresses and moduli
in oscillating extensional flow are developed in Sectin
In Section4, we discuss our simulation results. A system-
atic study of the oscillating stress and its relations with the
imposed strain rate, i.e., the loss and storage moduli, is pre-
sented. Effects of flow frequency and interfacial tension on
the excess stress are investigated. We also present a compa
ison with the moduli computed by Oldroyd4,45]and Yu
and Bousmind4]. Finally, Sectiorb summarizes the results.

Qe

(b)

Fig. 1. Schematic of (a) a dilute emulsion in an oscillatory extensional flow
and (b) the two-phase Navier—Stokes formalism.

2. Mathematical formulation and numerical

implementation of the flow

2.1. Planar osci”ating extensional flow Whereéo is the amplitude of the strain rate; and the fre-
quency of oscillation. The flow can be generated by an os-
We study flow of an emulsion in a planar oscillating ex- cillating four-roll mill (Fig. 1a). The dispersed droplets in
tension: such a flow experience identical straining. Also note that

u 01 0 x although the forcing flow is restricted in they plane,
. the presence of droplets induces fluid motion and excess
= 1 i o L . .
v £0.C0S() 0 8 g e @) stress in thez-direction, giving rise to a three-dimensional
w z

problem.
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2.2. Governing equations
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The flow of the Newtonian fluids in the entire domai
which consists of the continuous pha3gand the suspended

drops$2q (Fig. 1b) is governed by the Navier—Stokes equa- LKA AN
tion KDL IRE QV‘ RS
d(pu
(gz ) + V. (puu) = -Vp— /de/an(S(x — XB)
9B
+V - [u{Vu+ (Vu)T)], 2

wherep is the pressurep, the density ande, the viscosity

of the fluid. The superscript ‘T’ represents transpdeis

the drop—fluid interface consisting of points; I", the con-
stant interfacial tensiom;, the local curvature, the outward
normal to the interface; arii{x — xg), the three-dimensional
Dirac delta function. The interfacial tension, which produces
ajump inthe normal stress across the interface, is represented
as a singular body ford®9,40]. The variation of interfacial
tensionl”, e.g., due to presence of surfactant concentration
gradient is not considered. The evolution of interfageis
coupled with the fluid velocity by:

Fig. 2. Drop surface discretized by triangular elements.

obtains a Poisson equation which is solved using a multigrid
method. The velocity at the 3D grid is interpolated to front
nodes, and the front is updated to obtain its new position. To
prevent the front element from being excessively distorted,
B _ uixe) 3) an adaptivg regriddin.g ;cheme is implement_eq for the front.
dr ' The explicit scheme is inherently limited to finite Reynolds
The velocity field is incompressible, i.e7, - u = 0. number, and suffers from severe diffusion limited restrictions
We simulate the time evolution of a single viscous drop in ©N time steps at low Reynolds numbers. We g 0.1 for
the planar extensional flogt). For a dilute emulsion, the in- all our computation as a representatlve ca_se_for low Reynolds
teractions between different drops can be neglected, and eaclfUmper. To overcome the time step restriction, we treat the

drop can be assumed to undergo identical shape evolution diffusive terms semi-implicitly in alternate spatial directions

Note that the numerical implementation discussed below can(AD!)- ADI enhances the efficiency of the simulation by one
simulate strongly interacting multiple-drop systej88]. order of magnitude.

dXB

2.3. Numerical implementation 2.4. Non-dimensional parameters

The mathematical problem can be non-dimensionalized
using undeformed drop radii&and inverse extensional rate
gy Lasthe length and the time scales, respectively. We obtain
five non-dimensional parameters—Reynolds numBer=

The incompressible flow satisfying ER) is solved by
front tracking method39,40,42] We simulate the flow in
a finite computational domain, a cubic box of slzeAt its
boundary, the planar extensional fl¢d) is imposed. The péoR2/; inverse capillary numbek, = Ca—1 = I7(;ouR);
method treats the entire flow system as a single phase Withviscosity ratio = ug/pe; density ratioi, = pa/p and the non-
material properties varying sharply in a thin region (afew grid jiensional frequency Strouhal nupmbé‘r,z w/éo. The
points) across the interface. The stress due to surface te”Siogubscript ‘d’ represents the drop phase. As already men-
is treated as a distributed force over the same thin region bytioned, we restrict the simulation Re= 0.1 (sed43] for ef-
using a smooth representation of the Dirac delta function in g .+ of Reynolds number variation on drop deformation). For
Eq.(2). Here, we provide only a brief description (366,43]  hrevity we consider a viscosity and density matched emul-
for further details). The method uses a 3D staggered grid in sion, resulting in only an interfacial contribution to the excess

the entire domain and atriangular gridg. 2) thatdiscretizes o5 Note that the numerical scheme introduced above can
the drop surface (front). Using the front position, a smoothed 21 qle non-uniform material properties

description of the material property is obtained. It reduces

the multiphase flow into a single phase with varying prop-

erties. The single phase flow is then solved by an operator3. Interfacial stress and extensional moduli
splitting/projection finite difference method. In the first step,

an intermediate velocity is obtained using all term&iyex- 3.1. Interfacial stress averaging

cept the pressure gradient. The intermediate velocity is then

corrected using pressure gradient so that the final velocity sat- An emulsion can be viewed as a statistically indetermi-
isfies divergence condition. The pressure gradient correctionnate collection of droplets in a continuous ph@kg]. The



74 X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71-82

stress measured in experiments is an average over an ensen3.2. Interfacial extensional moduli

ble of realizations. It is equivalent to a volume average with

an appropriate volume chosen to satisfy the condition of sta- From one-drop excess stress and its phase relation with the
tistical stationarity and homogeneity. The averaging proce- imposed flow strain, the complex moduli can be calculated.
dure was introduced by Batchelor and extensively deployed Taking the coordinate axes along the axes of extension [clock-
in suspension§l8,22] As pointed out by Jansseune et al. wise rotated byr/4 from thex-y axes of Eq(1)], we obtain
[26,27], the average stress can be divided into two contribu- the principal directions for the excess stress. It takes diagonal
tions, one from the component fluids and the other from the form due to the symmetry of drop shape:

interface.

For both dispersed and the continuous phases satisfyin
Newtonian constitutive relation, the averaged stsegscan
be expressed 4%,17-19]

= 1/ dv
Cae=— | ©
ave % v

Md —
= —Pavd + Tave+

whereV is the averaging volumé/y andAg are the volume
and surface area of a typical drdpyye is the isotropic part
of the average stresk; the identity tensor, andaye is the
deviatoric part of the average “component” str§a8,34]
The third term is the contribution due to viscosity difference

between the drop and the continuous phases. It becomes zergd le (Zzz Z ) sin@’ St + 6),

>H 00
d d
gzexcess: 0 222 O (8)
o 0 Y%

The oscillating extensional flo@l) in diagonal form gives
rise to equal positive and negative strains along the exten-
sional axes:

/e dr = —smwt

wheret = tgg is non-dimensional time angy = ¢p/w =
1/Stisthe strainamplitude. We conS|derthe non-dimensional
normal stress dn‘ferenc@j22 5°9.. Denoting the phase
difference betweeE22 le and the imposed flow strain
asé, we have:

Sltsin(t’St), 9)

(10)

for » = 1. The fourth term is the excess stress representing the

contribution of the interfacial morphology:

:‘l/Z/Ad (nn—;)dA. (5)

whereq is the anisotropy or interface tengtr16], is a purely
geometric quantityn, as before is the outward unit normal
vector at the drop interface; a8 consists of all drop—fluid
interfaces. The interface tensor is calculated by numerical £
integration over the discretized interfad¢éd. 2).

For a dilute emulsion consisting of identical droplets
with volumeVy and surface arefy in the averaging volume

Oexcess— —1q,

V, the interface tensor can be expressed as a sum of individua

drop contributions:

q=2q q—i/ (nn—)dA
- d» d_Vd Aq 3

whered® =m\Vy/V is the volume fraction of drops. The excess
stressrexcessnON-dimensioanlized byég is

(6)

G d
Z = eX.CGSS= ¢Z
excess I’LEO excess
d I
Zexcess_ _uqu = —kRqy. (7)

Note that as expected in this non-interacting dilute sys-
tem, the stress is linear with volume fraction. The single-
drop non-dimensionalized excess str@ﬁxcessdepends
only on the drop shape and is computed from the numerical
simulation.

where superscript ‘0’ represents amplitude. Therefore, by ex-
amining the in-phase and the out-of-phase partggg -

E‘i’l, we obtain non-dimensional storage and loss moduli,
respectively:

|nt (222 le) St coss,
(222 le) St sind.

Using Egs.(7), (8) and (11), we compute the extensional
moduli for various flow parameters such as frequencsds (
fa\nd interfacial tensiork].

(11)

3.3. Oldroyd’s and Yu and Bousmina’'s model

Oldroyd [44,45] derived analytical expressions for lin-
ear viscoelasticity of a dilute Newtonian emulsion using an
asymptotic approach. He obtained Jeffrey’s equation:

d 2 e+t d €
—C = el
1o 24

O'—i-‘tldt

(12)
with

po = w1+ A1),
72 = 10(1 — A39),

11 = 10(1+ A29),

NECET) (19 +16)
T RGO T Be+ D@3
pyo  309.416) o (19 +16)2 + R

[100. + 1)(2. + 3)]’ [40T(x + 1)]

(13)
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For oscillating flows, assuming periodic variation for the the second step being a linearizationdn For viscosity

stressr =0 explwt) and the strain rate = €9 exp(wt), we matched dropX= 1), the model predicts:

obtain from Eq(12): 5
, 4o thk

G — ” 4wtok
1+ iot1)o = 2uo(l + iwt)E (14) 51+ w?t3)

D, Gyi=—"—5-@ 20
int 5(1+ Q)Z'L'g) ( )

In a planar extensional flow along the principal direction Comparing with the Oldroyd modéL7)for A = 1, we obtain
E (Oldroyld) =4G (Bousmina). In this limit the models are

10 0 equivalent.
€e=¢]|0 -1 O
0 0 O
4. Results
notinge = [ ¢ dr = &/iw, the complex extensional modulus
non-dimensionalized by is: We simulate a single viscous drop in a box-shaped do-
1 09— omt 1o 1+ it main as shown i|Fig.l3, with oscillating extensional flow
E=-—"—"22 - A < (15) imposed at the domain boundary. The undeformed drop ra-
Heo € pltion dius R is one-tenth the domain size By varying domain

Note that the extensional modulBsin a planar extensional size, we have ensured that the simulation is independent of
flow and the shear modul@sare related by the Trouton ratio:  the size of the domain. We also checked for grid-convergence
E=4G. Using(13), Eq.(15), after linearization with respect Py increasing the discretization from &181x 81 to

to &, becomes: 129x 129x 129 without finding significant change in the
result.

A A

E = i4SIL+ (AL — A2 — Ag)®] + i4S 22 .
1+ w®tg 4.1. Oscillating droplet morphology

Az + A3 . . L . .
+4Stwrom (16) The drop in a linear flow maintains an approximate ellip-
0

soidal shap§24,25] We plot the three axes of the ellipsoids
The modulus is further decomposed into a bulk part (inde- With non-dimensional time’ = 7 in Fig. 42. The initially
pendent of interfacial relaxatiory) and an interfacial part, ~ SPherical drop oscillates with the imposed flow. The maxi-
each of which consists of a storage modulus (prime) and amum () and the minimumg) axes are the maximum and

loss modulus (double prime): the minimum distances of the drop surface from its center,
and they lie in the plane of the extension. The points at the
E=E +iE" = (Ep+ Ei) + i(Efux + Eino maximum and minimum distances switch when the direc-

=0, o= ASHL + (A1 — Ap — A3)@], tion of extension changes in the course of oscillation. The

A A
E. = 4StwroL?é
1+ w?1§

17)

/! A
o, Ef =4St——>o.
1

Note that the linearization in volume fraction leads to mod-
uli proportional to volume fractior®, appropriate for the
first order theory of a dilute emulsion. The one-drop mod-
uli are obtained dividing the above expressionsdbys in
Eq. (7). 1 - < 4.

Recently, Yuand Bousimirfd] presentedamodelforboth | - «— .= — /Qj v

linear and nonlinear shear rheology of Newtonian emulsions. —_—T - =
For small amplitude oscillatory shear, the interfacial storage ~

and loss shear moduli non-dimensionalizedday are given i PR
as (Eqs(16)—(18)in [4]): [

/ Ble.L.CZ) ” Biwto

T eo(1+ w?td)’ T k(1 + w2td)’

(18)

where

3 20(0 + 1)
(2 +3)[B( + 1) — (5r + 2)P]

49
20 +3

r r
B R ~ R
Fig. 3. A spherical drop is initially placed at the center of the domain. An
(19) oscillatory extension flow is imposed at the boundary of the domain.
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Fig. 4. (a) Drop axes evolving with non-dimensional time in an oscillatory extensional flow; length, L (solid); breadth, B (dash-double-dotted)y wid
(dashed). (b) Drop shape in one period in steady sRee;0.1, St=4x, k=10.

width axisW, which is the maximum distance in the direc- phase differenceg (=n/2 — §) between deformatio® and
tion perpendicular to the plane of extension, does not changeflow strain rate¢ are plotted as functions @t at a con-
much {W/R~ 1.0), indicating that the deformation is smallin  stant interfacial tension parameter 45. At relatively high
the direction orthogonal to the plane of the flow. These axes frequencies $t>5r), Dmax decreases with increasing flow
reach a steady-oscillating state following a short transient. frequency. Increased frequency leads to quick reversals of
The frequency of drop oscillation follows the frequency of flow direction so that the drop does not deform appreciably.
the imposed flow. Ifrig. 4b, the top view ¢-direction) of drop The slight increase iDmax for lower frequencies§t> 5r)
shape in the oscillating flow is shown together with the flow leading to a peak is a resonance effect of the low but finite
field in a plane through the center of the drop. The drop expe- inertia, explained in detail if43]. The phase differencg
riences stretching in alternate orthogonal directions. Within increases from 0 ta/2 with the increase of flow frequency
one period of the flow, the deformation reaches maximum St At low frequencySt— 0, the deformation is in phase with
twice. The maximum deformation does not coincide with the the strain rate. As St— oo, the deformation ist/2 behind
maximum strain rate (velocity) of the flow (first, third, fifth  the strain rate, but in phase with the flow strain In Fig. 5b,
frames), indicating a finite phase lag in the drop response. Aswe plot the same quantiti®y,ax andg with varying interfa-
will be seen shortly, the excess stresses, which result fromcial tension parametéersubject to the same flow frequency
interfacial tension acting at the drop boundary, oscillate sim- (St=4r). Dmax displays monotonic decrease with increasing
ilarly with the imposed strain rate. k for k>10. Increased interfacial tension restrains drop de-
We study drop deformation using the paramefes formation. Similar taFig. 5a, we see a small peak caused by
(L — B)/L +B, suggested by Tayldi7]. In Fig. 5 we sum- finite inertia at lower values & The phas@ decreases with
marize the drop response as a function of non-dimensionalincreasingk. For extremely high interfacial tension, the de-
frequencySt and interfacial tensiok. As we saw irFig. 4a, formation is in phase with the strain rate. The drop response
the drop performs a steady oscillation following a short tran- is discussed in detail with the help of a simple damped mass-
sient. InFig. 5a, the maximum deformatioBmax and the spring model if43].



X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71-82 77

0.07

0.06

0.05

0.04

D]TIEX

0.03

0.02 I i oo b bbbl 1

R WA |

10 20 30 40 5060 0 20 40 60
(a) St St

0.09 1.51
0.08 =
0.07

0.06

0.05

D max

0.03 L

0.02 |- I L1l L L1l
= ] 0 I Lol L1l
10° 10' 10 10° 10’ 102
(b) k k

Fig. 5. (@)Dmaxandp vs.St Re=0.1,k=45; (b)Dmax andp vs.k; Re=0.1,St=4r.

4.2. Excess stress liquid at low frequencies, and elasticity takes precedence as
the frequency increases. The oscillation of stress is closely
From the simulated drop shape, we compute one-droprelated to the oscillation of drop deformation.Hig. 7, the
excess non-dimensional streEﬁXcess appropriate for a di-  top view of the drop (frome-direction) is shown together
lute emulsion. IrFig. 6, we investigate the non-dimensional with the velocity field in the plane through the center of the
excess stress differenc;ﬁg2 - 25’1 and its relation to the  drop. For both low $t=x) and high §t=20r) frequencies,
imposed strain raté/eg. The sinusoidal variation of the the shape of the deformed drop at different time-instants
strain rate (dashed curve) is plotted at top left. In the sub- are plotted. At a low frequenc$t=r, the drop deforms in
sequent plots}:‘g2 — Egl is shown in the steady-oscillation  phase with the strain rate, the latter represented by velocity
state { >t'steaqy for the same interfacial tension parameter vectors. At a high frequencgt=20r, a phase difference
k=45 but different flow frequenciesS{=n, 8, 20r). of n/2 exists between the deformation and the strain rate.
The magnitude of the stress difference decreases due toAs the strain rate achieves maximum (bottom left and right
decreased drop deformation with increasing flow frequency frames), deformation approaches zero. For zero strain rate
(seeFig. 5a). To demonstrate the phase of stress oscillation, (bottom middle frame), deformation reaches the maxi-
the timet’ is scaled by5{(t'St=wt). For drops with moderate ~ mum.
interfacial tensionk=45, at a low flow frequencyst=r, In Fig. 8 similar curves as those iRig. 7 are shown.
the resulting excess stress differerE%2 - 2‘1’1 is in phase However, drops with different interfacial tensiok=1, 50,
with the strain rate of the flow. However, at a high frequency 200) are forced by a flow with the same frequeisty 4r.
St=207, £9, — ¢, lags byn/2 behind strain rate, with At low interfacial tensiork=1, X9, — x¢, lags byx/2 be-
intermediate phase lag fdt=8r. The stress—strain rate hind the strain raté/eg. At high interfacial tensiok =200,
relation indicates that the emulsion behaves as a viscous¥$, — ¢, is in phase with the strain rate, with a transi-



78 X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71-82

0.75F °\ )/ 6F
» \
o5F i 4F
L \ ' r
» \ F
0.25 F \ i - Z2F
. E \ ! el r
£ o : ' Wwooof
w C A / o~
E \ f 'UNN E
0.25F \ ; 2
= /
- A A=
,0,5? \ ff 4
= AY
0.75F X /! 6F
r N /
F % ’ F
e SRR R Bl N A A i Il 3 R N R
o 2 a3 4 5 6 o 1 2 3
t'st t'St

Flow strain rate Excess stress St=rx

d .d
L2y

'St t'st
Excess stress St=87 Excess stress St= 207

Fig. 6. Variation of flow strain rate (top left) and one-drop excess stress diﬁe@}ce Efl (others), during one period of steady oscillatikr;45,Re=0.1.

tion at intermediate values of interfacial tension. However, 4.3. Complex interfacial extensional moduli

note that for the low value of interfacial tensit 1, the

stress is much less than those for the other two cases. In  We investigate the linear extensional rheology using stor-
the limit of zero interfacial tension, the excess stress is in age and loss moduki, and ES introduced in Sectios.2
phase with the flow strain, characteristic of an elastic ma- We compare with analytical expressions for moduli obtained
terial, due to the fact that the drop shape follows the flow by Oldroyd[44,45](the same as that due to Yu and Bousmina
strain. The drop deformation rate is in phase with the im- [4]). In Fig. 9a, the variation of the non-dimensional inter-
posed strain rate, and thereby the drop sha@ebehind the  facial extensional moduli with frequen&tis shown. Our
strain rate. The excess interfacial stress is proportional toresults match very well with analytical prediction. At low
drop deformation. For high interfacial tension, drop is more flow frequency, the phase differendebetween stress and
elastic; its deformation is in phase with the strain rate, giv- strain approaches/2 (§=7/2 — B), so thatEi‘ﬂ;t approaches
ing rise to interfacial stress proportional to imposed strain .o much faster thaid"

. . :- Inthis case, viscous dissipation is
rate, a viscous behavior. Therefore, when the drop behave ; M ; : :
' . ' Sdominant and the emulsion behaves like a Newtonian fluid.

as a viscous system at low interfacial tension, the resulting As the imposed flow frequency increaséslecreases such
interfacial stress of the emulsion is elastic, and when the drop d d’ .
behaves like an elastic system at high interfacial tension thethat 'the'curve OF i an (.jE"“ cross © _ach other. Bo th viscous

. . o '~ ~dissipation and elasticity are significant rendering the emul-
interfacial stress is viscous. Note that we are only concernedSion viscoelastic. At the other end of high flow frequencies
here with the excess stress, and not the total stress which in- ' ¢ is much larger tharE?”, indi- ’

cludesthe stresses due to the componentliquids. Even thougﬁS approaches zero ank int’

the excess interfacial stre§§2 _ Egl is elastic at low inter- cating strong elasticity. In conformity with analytical results

. d’ _
facial tension, it vanishes in proportion with the interfacial (17)and(20), for St— oo we find £y — 16k/5 = 144 and

tension. In the limit of an infinitely large interfacial tension, Einy — 0. Ourresults seem to deviate from the analytical the-
the excess stress is viscous, because the drop does not deforffies at high frequencieS$(= 3r). Itis an effect of small but
much. The overall emulsion behavior is viscoelastic for mod- finite inertia. The unsteady tera(pu)/dt in Navier-Stokes

erate values of interfacial tensions where drop deformation is EQ- (2) is ~O(ReS}). At sufficiently high frequency, even
significant. for the present case of smdfe=0.1, it can become sig-
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nificant, and lead to deviation from the Stokes-regime and b further scaled biyas a function ofStk. Such a func-

predictions. tional dependence is also predicted by the analytical result
In Fig. %, we plot interfacial moduli versus inverse cap- (20), hoting thatwtg ~ Stk. The plots for fixeck and fixedSt

illary numberk. The results match analytical prediction. For match each other for smaller valuesS¥k. The discrepancy

small interfacial tensionj approaches zero, so thﬂﬁ;’t ap- for larger Stk can be attributed to finite Reynolds number
proaches zero much faster theg), . As interfacial tensionin-  ffects~O(ReS}

creasesj increases such that the curverd}, and EY, cross

over. At high interfacial tensiors, approaches/2 and E9,

) ’ k int 5. Summary
is much larger thanEﬁn. The analytical resultél7) and(20)
predictEﬁ;t — 0, andEﬁ';/t — 75t = 28r ask— oo. The be- We have investigated extensional rheology of a dilute

havior is in conformity withFig. 8, where we saw that when  emulsion of drops using direct numerical simulation. The
the drop behaves like a viscous system at low interfacial ten- exact drop dynamics was computed using a front tracking
sion, the emulsion interfacial stress is elastic, and vice versa.method in an oscillating extensional flow. The drop shape is
In fact, the effects of variation in interfacial tension and used to find the excess interfacial stress and interfacial moduli
frequency can be better understood by noting that the dy- of the emulsion. The theory is linear in the volume fraction.
namics is governed by a competition between the relaxation The simulation results match the analytical predictions due
time scalerg ~ uR/T" [see Eq(13)] due to interfacial tension  to Oldroyd or Yu and Bousmina. The interfacial stress fol-
and the time period of oscillation—1 [46]. Accordingly, we lows the evolving drop shape, particularly its phase giving
plot in Fig. 9 the non-dimensional moduli shownfing. Sa rise to complex rheological response varying with frequency
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and interfacial tension. As expected, the interfacial excess[18] J. Mellema, M.W.M. Willemse, Effective viscosity of dispersions ap-

stress is predominantly viscous (elastic) for time period of
oscillation much larger (smaller) than the relaxation time; the

phenomenon is explained with the help of the drop dynamics.
The drop—drop interaction neglected in the present analysis

plays a significant role in a non-dilute emulsion. The methods

used in this paper can be extended to investigate the rheology
of concentrated emulsions, emulsions of viscoelastic drops

[47,48]and emulsions at high drop inertia.

Acknowledgements

Financial support from Department of Mechanical Engi-
neering, University of Delaware and University of Delaware

proached by a statistical continuum method, Physica A 122A (1983)
286-312.

[19] A. Onuki, Viscosity enhancement by domains in phase-separating
fluids near the critical points: proposal of critical rheology, Phys.
Rev. A 35 (12) (1987) 5149-5155.

[20] A.S. Almusallam, R.G. Larson, M.J. Solomon, Comprehensive con-

stitutive model for immiscible blends of Newtonian polymers, J.

Rheol. 48 (2) (2004) 319-384.

[21] H.M. Lee, O.0O. Park, Rheology and dynamics of immiscible polymer
blends, J. Rheol. 38 (5) (1994) 1405-1425.

[22] G.W.M. Peters, S. Hansen, H.E.H. Meijer, Constitutive modeling of
dispersive mixtures, J. Rheol. 45 (2001) 659-689.

[23] P.L. Maffettone, M. Minale, Equations of change for ellipsoidal drops
in viscous flow, J. Non-Newtonian Fluid Mech. 78 (1998) 227-
241.

[24] S. Guido, M. Villone, Three-dimensional shape of a drop under
simple shear flow, J. Rheol. 42 (2) (1998) 395-415.

Research Foundation is acknowledged Authors also aC_[25] Y.T. Hu, A. Lips, Transient and steady state three-dimensional drop

knowledge suggested references from one anonymous re-

viewer.

References

[1] C.L. Tucker I, P. Moldenaers, Microstructural evolution in polymer
blends, Ann. Rev. Fluid Mech. 34 (2002) 177-210.

[2] S. Wannaborworn, M.R. Mackley, Y. Renardy, Experimental obser-
vation and matching numerical simulation for the deformation and
breakup of immiscible drops in oscillatory shear, J. Rheol. 46 (5)
(2002) 1279-1293.

[3] R. Cavallo, S. Guido, M. Simeone, Drop deformation under small-
amplitude oscillatory shear flow, Rheol. Acta 42 (2003) 1-9.

[4] W. Yu, M. Bousmina, Modeling of oscillatory shear flow of emul-
sions under small and large deformation fields, J. Rheol. 46 (6)
(2002) 1401-1418.

[5] W. Yu, M. Bousmina, M. Grmela, J. Palierne, C. Zhou, Quantita-
tive relationship between rheology and morphology in emulsions, J.
Rheol. 46 (6) (2002) 1381-1399.

[6] B.J. Bentley, L.G. Leal, An experimental investigation of drop de-
formation and breakup in steady, two-dimensional linear flows, J.
Fluid Mech. 167 (1986) 241-283.

[7] G.I. Taylor, The formation of emulsions in definable fields of flow,
Proc. R. Soc. A 146 (1934) 501-523.

[8] R.G. Cox, The deformation of a drop in general time-dependent fluid
flow, J. Fluid Mech. 37 (1969) 601-623.

[9] N.A. Frankel, A. Acrivos, The constitutive equations for a dilute
emulsion, J. Fluid Mech. 44 (1970) 65-78.

[10] D. Barthes-Biesel, A. Acrivos, The rheology of suspensions and its
relation to phenomenological theories for non-Newtonian fluids, Int.
J. Multiphase Flow 1 (1973) 1-24.

[11] J.M. Rallison, Note on the time-dependent deformation of a viscous
drop which is almost spherical, J. Fluid Mech. 98 (1980) 625-633.

[12] A. Acrivos, T.S. Lo, Deformation and breakup of a single slender
drop in an extensional flow, J. Fluid Mech. 86 (1978) 641-672.

[13] E.J. Hinch, A. Acrivos, Long slender drops in a simple shear flow,
J. Fluid Mech. 98 (1980) 305-328.

[14] D.V. Khakhar, J.M. Ottino, Deformation and breakup of slender
drops in linear flows, J. Fluid Mech. 166 (1986) 185-265.

[15] H.A. Stone, Dynamics of drop deformation and breakup in viscous
fluids, Ann. Rev. Fluid Dyn. 26 (1994) 65-102.

[16] M. Doi, T. Ohta, Dynamics and rheology of complex interfaces, Int.
J. Chem. Phys. 95 (1991) 1242-1248.

[17] G.K. Batchelor, The stress system in a suspension of force-free par-
ticles, J. Fluid Mech. 41 (3) (1970) 45-570.

shapes and dimensions under planar extensional flow, J. Rheol. 47

(2) (2003) 349-369.

[26] T. Jansseune, J. Mewis, P. Moldenaers, M. Minale, P.L. Maffettone,
Rheology and rheological morphology determination in immiscible
two-phase polymer model blends, J. Non-Newtonian Fluid Mech. 93
(2000) 153-165.

[27] T. Jansseune, I. Vinckier, P. Moldenaers, J. Mewis, Transient stresses
in immiscible model polymer blends during start-up flows, J. Non-
Newtonian Fluid Mech. 99 (2001) 167-181.

[28] E.D. Wetzel, C.L. Tucker lll, Area tensors for modeling microstruc-
ture during laminar liquid—liquid mixing, Int. J. Multiphase Flow 25
(1999) 35-61.

[29] E.D. Wetzel, C.L. Tucker lll, Droplet deformation in dispersions
with unequal viscosities and zero interfacial tension, J. Fluid Mech.
426 (2001) 199-228.

[30] N.E. Jackson, C.L. Tucker Ill, A model for large deformation of an
ellipsoidal droplet with interfacial tension, J. Rheol. 47 (3) (2003)
659-682.

[31] Y. Wu, A.Z. Zinchenko, R.H. Davis, Ellipsoidal model for de-
formable drops and application to non-Newtonian emulsion flow,
J. Non-Newtonian Fluid Mech. 102 (2002) 281-298.

[32] W. Yu, M. Bousmina, Ellipsoidal model for droplet deformation in
emulsions, J. Rheol. 47 (4) (2003) 1011-1039.

[33] M.R. Kennedy, C. Pozrikidis, R. Skalak, Motion and deformation of
liquid drops and the rheology of dilute emulsions in simple shear
flow, Comput. Fluids 23 (1994) 251-278.

[34] V. Cristini, C.W. Macosko, T. Jansseune, A note on transient stress
calculation via numerical simulations, J. Non-Newtonian Fluid Mech.
105 (2002) 177-187.

[35] M. Loewenberg, E.J. Hinch, Numerical simulation of a concen-
trated emulsion in shear flow, J. Fluid Mech. 321 (1996) 395-
419.

[36] A.Z. Zinchenko, R.H. Davis, Shear flow of highly concentrated emul-
sions of deformable drops by numerical simulations, J. Fluid Mech.
455 (2002) 21-62.

[37] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-
surface and interfacial flow, Ann. Rev. Fluid Dyn. 31 (1999)
567-603.

[38] J.A. Sethian, P. Smereca, Level set methods for fluid interfaces, Ann.
Rev. Fluid Dyn. 35 (2003) 341-372.

[39] G. Tryggvason, B. Bunner, O. Ebrat, W. Taubar, Computation of
multiphase flows by a finite difference front tracking method. I.
Multi-fluid flows, 29th Computational Fluid Dynamics Lecture Series
1998-03, Von Karman Institute of Fluid Dynamics, 1998.

[40] K. Sarkar, W.R. Schowalter, Deformation of a two-dimensional

drop at non-zero Reynolds number in time-periodic extensional

flows: numerical simulation, J. Fluid Mech. 436 (2001) 177-

206.



82 X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71-82

[41] K. Sarkar, W.R. Schowalter, Deformation of a two-dimensional vis- [45] J.G. Oldroyd, The effect of interfacial stabilizing films on the elastic

cous drop in time-periodic extensional flows: analytical treatment, J. and viscous properties of emulsions, Proc. R. Soc. A232 (1955)
Fluid Mech. 436 (2001) 207-230. 567-577.

[42] K. Sarkar, W.R. Schowalter, Deformation of a two-dimensional vis- [46] M. Bousmina, Effect of interfacial tension on linear viscoelastic
coelastic drop at non-zero Reynolds number in time-periodic exten- behavior of immiscible polymer blends, Rheol. Acta 38 (1999)
sional flows, J. Non-Newtonian Fluid Mech. 95 (2000) 315-342. 251-254.

[43] X. Li, K. Sarkar, Drop dynamics in an oscillating extensional flow [47] W. Yu, M. Bousmina, C. Zhou, C.L. Tucker, Theory for drop defor-
at finite Reynolds numbers, Phys. Fluids 17, 027103 (2005). mation in viscoelastic systems, J. Rheol. 48 (2) (2004) 417-438.

[44] J.G. Oldroyd, The elastic and viscous properties of emulsions and [48] P.L. Maffettone, F. Greco, Ellipsoidal drop model for single drop
suspensions, Proc. R. Soc. A218 (1953) 122-132. dynamics with non-Newtonian fluids, J. Rheol. 48 (1) (2004) 83-100.



	Numerical investigation of the rheology of a dilute emulsion of drops in an oscillating extensional flow
	Introduction
	Mathematical formulation and numerical implementation of the flow
	Planar oscillating extensional flow
	Governing equations
	Numerical implementation
	Non-dimensional parameters

	Interfacial stress and extensional moduli
	Interfacial stress averaging
	Interfacial extensional moduli
	Oldroyds and Yu and Bousminas model

	Results
	Oscillating droplet morphology
	Excess stress
	Complex interfacial extensional moduli

	Summary
	Acknowledgements
	References


