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Abstract 

Subharmonic response from contrast microbubbles as a function of ambient overpressure is numerically 

investigated for subharmonic aided noninvasive estimation of local organ level blood pressure. Three 

different interfacial rheological models for the encapsulation is used with material parameters appropriate 

for a common lipid coated contrast agent Sonazoid. The subharmonic response is seen to either decrease, 

increase or vary nonmonotonically with increasing ambient pressure. Compared to a free microbubbles 

important differences arise due to the encapsulation. Specifically due to the enhanced damping due to 

encapsulation, the range of excitation over which subharmonic is seen is broader than that in free 

microbubbles. This results in different trends of subharmonic response at the same excitation frequency 

for different excitation pressures. The observed behaviors are explained by investigating subharmonic 

generation threshold and resonance frequency.   
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I. Introduction 

Gas microbubbles (diameter < 10 ) coated with lipids, proteins, polymers and other surface active 

materials are an ideal candidate for enhancing the contrast of diagnostic ultrasound images (deJong, 1996; 

Goldberg et al., 2001; Ferrara et al., 2007; Nahire et al., 2014a; Nahire et al., 2014b; Paul et al., 2014). 

These ultrasound contrast agents (UCA) are strongly nonlinear; under a strong enough excitation they 

generate second harmonic (response at frequency 2 f  when excited at f ) and subharmonic (response at 

frequency / 2f ) signals giving rise to harmonic (deJong et al., 1994; Chang et al., 1995) and subharmonic 

(Shankar et al., 1998; 1999; Shi et al., 1999a; Shi et al., 1999b; Forsberg et al., 2000) imaging modalities 

with superior contrast-to-tissue ratio. Recently, Forsberg et al have proposed and implemented a novel 

technique of using ambient pressure dependent subharmonic (at half the excitation frequency) response 

of UCAs for noninvasively estimating the local organ level blood pressure (Shi et al., 1999d; c; Leodore 

et al., 2007; Halldorsdottir et al., 2011; Dave et al., 2012a; Dave et al., 2012b). In a previous article 

(Katiyar et al., 2011), we demonstrated that as per single bubble dynamics model, subharmonic response 

from free microbubbles may either increases, decrease or vary non-monotonically with increasing ambient 

pressure. Here, we extend the study to encapsulated microbubbles numerically simulating its dynamics 

with different models of encapsulations and explain the underlying physics.  

 

Local organ-level pressure estimation can provide critical information for accurate diagnosis of cardio-

vascular diseases such as portal hypertension (Itai and Matsui, 1997; Pieters et al., 1997) or heart valve 

defects (Marino et al., 1985; Kasimir et al., 2004). Currently available techniques include insertion of 

manometer-tipped catheter which, though accurately measures absolute local pressure, suffers from 

complications associated with such invasive techniques. On the other hand the non-invasive Doppler 

ultrasound has proved unreliable (Strauss et al., 1993; Reddy et al., 2003). Bubbles, because of their high 

compressibility, offer promises as an effective pressure sensor. In the seventies, Fairbank and Scully 

attempted to utilize the shift of microbubble resonance frequency with ambient pressure for pressure 

measurement (Fairbank and Scully, 1977). However, lack of a monodisperse microbubble suspension 

prevented a sharp resonance frequency delineation. Subsequent effort to improve this idea has faced 

limitations due to intrinsic lack of sensitivity of the technique (Hok, 1981; Ishihara et al., 1988; Bouakaz 

et al., 1999) .  
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Shi et al (Shi et al., 1999d) found that subharmonic response varies far more strongly with ambient 

pressure than fundamental or second harmonic response from contrast agent Levovist9.9 dB decrease 

with 24.8 kPa increase in ambient pressure at 2 MHz and 0.39 MPa excitation. Later the same group 

obtained linear decrease with a number of contrast agents10.1 dB for Optison (GE Healthcare, 

Princeton, NJ), 11.03 dB for Definity (Lantheus Imaging, N. Billerica, MA), 12.2 dB for PRC-1 

(Zhifuxian, Xinqiao Hospital, the Third Military Medical University, Chongqing, China), and 13.3 dB for 

Sonazoid (GE Healthcare, Oslo, Norway) (Leodore et al., 2007; Halldorsdottir et al., 2011). They have 

already investigated application of this technique for monitoring of portal hypertension (Dave et al., 

2012a) and tracking pressure in LV (Dave et al., 2012b) and interstitial fluids in tumors (Halldorsdottir et 

al., 2014).  Adam et al (Adam et al., 2005) found an 8 dB reduction in subharmonic response from UCA 

Optison with 40–140 mm Hg increase in ambient pressure. Andersen and Jensen in their experiment with 

UCA Sono Vue (Bracco, Milano, Italy) found the ratio of the subharmonic to fundamental to be a better 

measure for pressure variation, which showed a linear decrease (roughly 0.4 dB/kPa) with pressure 

increase at an excitation of 0.5 MPa and 4 MHz (Andersen and Jensen, 2010). In contrast to all these 

observations that showed subharmonic decrease with ambient pressure, phospholipid coated bubbles 

(similar to BR14 or Sono Vue) showed 9.6 dB decrease in subharmonic for 180 mm Hg increase in 

ambient pressure at 400kPa excitation; they also found a 28.9 dB increase in subharmonic at a low 

excitation of 50kPa (Frinking et al., 2010).      

 

Note that all but one experimental investigations noted above found a decrease in subharmonic response 

with ambient pressure increase. Intuitively one would expect a decrease in bubble activity with ambient 

pressure increase which is expected to restrict bubble activities. However, in our previous article, we 

conclusively demonstrated that the well-established Rayleigh-Plesset equation predicts that subharmonic 

response from a microbubble can either increase or decrease with ambient pressure, the behavior 

depending on the ratio of the excitation frequency to bubble resonance frequency (Katiyar et al., 2011). 

The phenomenon was explained in light of resonance phenomenon, in that the behavior changes from 

increasing to decreasing as one either approach subharmonic resonance peak or recedes from it. However, 

we restricted the study to free microbubble so that the underlying physics can be understood free of the 

uncertainties of encapsulation models. Free microbubbles are unstable due to high Laplace pressure and 

dissolves away in milliseconds (Sarkar et al., 2009). The encapsulation stabilizes against gas diffusion 

(Katiyar and Sarkar, 2010; 2012), but also critically affects the acoustic behaviors (deJong et al., 1992; 
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Chatterjee and Sarkar, 2003; Paul et al., 2014) including subharmonic response and its excitation threshold 

(Katiyar and Sarkar, 2011; 2012).  

 

Henceforth, we will refer to our earlier article (Katiyar et al., 2011) on pressure dependent subharmonic 

response of free microbubbles as KS11. There we briefly considered the case of encapsulated agents by 

simulating it using the code BUBBLESIM that assumes a linear viscoelastic shell model. This was to 

show that an earlier study (Andersen and Jensen, 2009) using BUBBLESIM found only decreasing trend 

of subharmonic response with increasing ambient pressure, is because the authors restricted to single 

frequencies2.06 MHz for Levovist 2.46 MHz for Sonazoid. When excitation frequency was varied, one 

gets diverse subharmonic responses depending on frequenciesmonotonically decreasing, increasing or 

nonmonotonically varyingwith increasing ambient pressure. However, there has not been any 

systematic investigation of the underlying physics of pressure dependent subharmonic response from 

encapsulated microbubbles.     

  

As noted before, there have been many models developed for contrast agents staring from simple yet 

effective representation of the encapsulating shell by effective lumped parameters (deJong et al., 1992). 

Church (Church, 1995) considered the first rigorous model as a layer of viscoelastic material. In 2003, 

arguing that for a few-molecule-thick encapsulation, such a finite-thickness models are inappropriate, we 

introduced an interfacial rheological approach of modeling encapsulation (Chatterjee and Sarkar, 2003). 

Over the years, we hierarchically developed the original Newtonian model to a viscoelastic (CEM) (Sarkar 

et al., 2005) and an exponentially elastic model (EEM) (Paul et al., 2010). Marmottant et al introduced an 

interesting interfacial rheological model which combined a viscoelastic interface that has a buckling as 

well as a rupture radius. This model was very successfully applied to explain many phenomena 

experimentally observed using ultrahigh framerate optical setup (Marmottant et al., 2005). In the 

following, we consider three different models of encapsulation1) due to Church, and modified by Hoff 

et al (CH), 2) EEM model, and 3) Marmottant model (MM) to a typical Sonazoid microbubble.  In Section 

II, we provide the mathematical description and the numerical technique. Section III presents the results 

and IV summaries the findings.  

 

II. Mathematical Formulation and Numerical Solution 
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A. Governing equations 

The dynamics of an encapsulated microbubble is governed by the Rayleigh-Plesset type equation. A 

number of different models have been proposed to account for the forces arising at the encapsulation, 

some treating the encapsulation as a thin layer of finite thickness characterized by bulk viscosity and 

elasticity, others treating it as a rheologically complex interface with interfacial viscosity and elasticity. 

We have recently shown that in the limit of infinitesimal thickness, they can all be cast in a common form:    
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R is the time dependent bubble radius,  R  and   R  are the first and the second order time derivatives of the 

bubble radius, 1485c  m/s is the velocity of sound in the surrounding liquid representing finite 

compressibility, 1000   kg/m3 is the liquid density, 0.001  Ns/m2 is the liquid viscosity, 0R is the 

initial bubble radius,
 0GP  is the initial inside gas pressure, 0p is the ambient pressure and ( )Ap t is the 

excitation pressure. Gas diffusion during oscillation is neglected. The inside gas pressure obeys a 

polytropic law with index  . Since with oscillations at MHz frequency Peclet number 
2

0 / 1gPe R D

( gD  is the thermal diffusivity; for C3F8 in side Sonazoid 2.8×10-6 m2/s), we assume an adiabatic behavior 

for the gas inside ( =1.07 for C3F8). The effective surface tension ( )R and the surface dilatational 

viscosity ( )s R describe the interfacial rheology of the encapsulation. For a free bubble ( ) wR  , 

surface tension at a pure air-water interface and ( ) 0s R   .  

B. Interfacial rheology of the encapsulation  

We use three different models for the interfacial rheology, i.e. ( )R and ( )s R : 

1. Viscoelastic model with exponentially varying elasticity (EEM) (Paul et al., 2010) 

0( )  sR E    and  ( )s sR   (constant),    (2)  
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where 0  is the constant interfacial tension,  0 exp( )s s sE E     , 
2 2/ 1ER R    is the area fraction 

change. Enforcing a balance of pressure and zero effective surface tension for stability 
0

0R  we obtain 

equilibrium radius  
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The expression for the resonance frequency (
0

0f with initial radius
0

0R ) due to EEM is given as  
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2. Marmottant model (MM) (Marmottant et al., 2005): 
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 and ( )s sR   (constant),  (4) 

where  (same as 
sE in (2) )  is the elastic modulus of the shell,  

1/2

0 01 /bucklingR R R 


     

and  
1/2

1 /rupture bucklingR R    . Above ruptureR , the bubble is assumed to have a pure air-water interface 

and below bucklingR , it is in a buckled state where the effective interfacial tension is zero. As can be seen 

there are additional parameters in this model such as bucklingR . We assume that the bubble is initially in a 

buckled state 
0

0 bucklingR R . Note that further increasing overpressure decreases the radius keeping it in a 

buckled state.  Due to the discontinuous nature of (4) near buckling radius an analytical expression for the 

resonance frequency was not available. It was computed numerically.    
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3. Church-Hoff model (CH) (Church, 1995; Hoff et al., 2000) 
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This model treats the encapsulation as a layer of finite thickness 
0shd containing a viscoelastic material 

with shear modulus sG and shear viscosity s here cast in an interfacial rheological assuming small 
0shd . 

The resonance frequency is  
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C. Static change in initial radius due to overpressure  

As noted in KS11, the static overpressure changes the initial bubble radius. Its value 0R is different from 

the value 
0

0R  at atmospheric pressure. Stability against gas diffusion at atmospheric pressure requires 

0

0( ) 0R  . We assume that gas exchange during static pressure change is negligible. It can be justified by 

noting that the encapsulation effectively hinders gas permeation. The gas diffusion can significantly 

decrease the bubble radius and effectively change the size distribution. We have recently executed a 

theoretical investigation modelling diffusion and resulting change radius decrease while analysing 

experimentally measured attenuation through a contrast agent suspension under overpressure. The results 

are based on entire bubble distribution. Here, however we are only interested in describing response from 

a single bubble, and want to avoid the uncertainties of determining gas permeability of the encapsulation. 

Gas permeability decreases the radius of a microbubble of initial radius 3 m (the size considered 

extensively in the article) by 2.5% under an overpressure of 200 mmHg. The decrease is smaller for 

smaller initial radii. At static condition, considering the equation (1) at atmospheric pressure and at a finite 

overpressure one obtains   
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Knowing the static bubble radius 
0

0R at atmospheric pressure (7) is solved to find the initial radius of the 

bubble 0R at other ambient pressures (i.e. in presence of nonzero overpressures). 

Table 1. Encapsulation parameters for Sonazoid contrast agent used in the numerical simulation 
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Marmottant model (Marmottant et al., 

2005) 

 

D. Acoustic response of an encapsulated bubble  

The bubble dynamics equation (1) is solved using MATLAB® (Mathworks Inc., Natick, MA) to compute 

bubble radius. The scattered acoustic pressure is computed as 

2( , ) ( 2 ),s

R
P r t RR R

r
           (8) 

After the scattered response is computed, one performs an FFT to obtain the components at various 

frequencies, specifically the subharmonic component of ½ order, at / 2f  . Forsberg et al found that among 

the UCAs they studiedDefinity, Levovist, Optison, ZFX, and SonazoidSonazoid performed the best 

for pressure estimation. Therefore, in this study we use is as the model UCA. It has a lipid coating and a 

C4F10 gas core. In Table 1, we list the model parameters for Sonazoid used in the numerical simulation for 

each of the three encapsulation models considered.  Sonazoid bubbles have a size distribution with number 

average radius 1.6m. However, not all size contribute equally to subharmonic response. Subharmonic 

response from microbubbles occurs only above a threshold excitation level; threshold level increases with 

decreasing radius. In our earlier publication, we showed that the representative radius of the bubble that 

are contributing to the subharmonic response in the neighbourhood of the experimentally observed 

threshold, 200-400kPa and at 2 and 3 MHz excitation frequency is about 3m. Therefore, in this paper, 

we present our results for this radius and then briefly consider the number average radius values.         
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III. Results and Discussion 

 

A. Subharmonic response variation with ambient pressure 

In KS11, for a free microbubble, we explained the subharmonic response variation with ambient pressure 

using the idea of subharmonic resonance. Just like the fundamental response, we showed that the 

subharmonic response from a microbubble as a function of excitation frequency normalized by its 

resonance frequency ( 0/f f  ) has a peaksubharmonic resonance. The peak was found near a value of 

about 1.65. The resonance frequency 0f  of a microbubble increases with increasing ambient pressure e.g. 

as per equation (3). Therefore, when the ambient pressure is increased, in the subharmonic resonance 

curve one either approaches the peak (for 0/f f far above 1.65)subharmonic response increasesor 

one recedes away from the peak (for 0/f f  far below 1.65)subharmonic decreases. The subharmonic 

resonance curve typically was shown to have undulations near the peak value, which explained the 

nonmonotonic behavior in the intermediate excitation frequencies.  

In this subsection, we consider EEM for encapsulation rheology leaving other models to a later subsection. 

In Figure 1(a), we plot the subharmonic response from a Sonazoid microbubble of initial radius 3m as a 

function of 0/f f  at atmospheric pressure for different excitation amplitudes. Note that in KS11, we just 

plotted this curve for single excitation amplitude 0.24 MPa. Here curves are different for different 

excitations. For lower excitations 0.34 MPa and 0.36 MPa, one sees curves similar to the one seen for free 

bubbles in KS11. But for higher excitations, we do not see the sharp decrease away from the peak in the 

low frequency range. In Figure 1(b), (c) and (d), we plot the subharmonic variation with ambient pressure 

increase for different pressure excitations, 0.34 MPa, 0.38 MPa and 0.44MPa. In Figure 1(b), excitation 

amplitude 0.34 MPa falls below the threshold of subharmonic generation at higher ambient pressures for 

0

0/f f =1.4, 1.7 and 1.9; therefore the curves are only plotted till one gets subharmonic. Here for the lower 

frequency ratios ( 0

0/f f <1.7) one sees monotonic decrease, and for higher frequency ratios one sees 

monotonic increase. Note that 0

0f = 1.76 MHz. In Figure 1(c) at 0.38 MPa, 0

0/f f = 1.2 and 1.3 show 

monotonic decrease, 0

0/f f = 1.4 and 1.6 nonmonotonic variation and frequency ratio 1.8 and above 

showed monotonic increase. In Figure 1(d) at 0.44 MPa, for the high excitation frequencies 0

0/f f = 1.8 

and 2.1, subharmonic decreases. For the lower frequencies 0

0/f f = 1.2 and 1.4, we see the nonmonotonic 
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variation. We do not see any monotonic decrease at this excitation even at lower frequency ratios. 

Therefore, unlike the cases considered in KS11, here the excitation amplitude plays a crucial role.  

 

  

  

Figure 1.  (a) Subharmonic response of Sonazoid microbubble (
0

0R = 3 m) as a function of 
0

0/f f  ( 0

0f = 1.76 

MHz). Subarmonic response as a function of ambient overpressure at excitation amplitude 0.34 MPa (b), 0.38 

MPa (c) and 0.44 MPa (d) according to EEM model.   
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Figure 2.  Subharmonic response of Sonazoid microbubble ( 0

0R = 3 m) varying with excitation 

pressure (a) and with ambient over pressure (b) at 0

0/f f =2.3 according to EEM model.   

 

Similar to KS11, we note here that at sufficiently high frequency ratios 0

0/ 2.0f f  , one does see a 

monotonic increase of subharmonic response with ambient pressure as long as the excitation is above 

threshold of subharmonic generation. It follows again from the sharp drop-off there in the subharmonic 

response versus frequency ratio (Figure 1a). We see it clearly in Figure 2 at 0

0/ 2.3f f  . Figure 2(a) plots 

the subharmonic response as a function of excitation pressure for several different ambient pressures. The 

threshold decreases with increasing ambient pressure. This generates the subharmonic variation with 

ambient pressures at different excitation pressures in Figure 2(b), where excitations are chosen above 

thresholds. Subharmonic response characteristically arises beyond a threshold excitation and then rapidly 

rises to reach a saturation level. The maximum sensitivity of subharmonic response with ambient pressure 

is achieved if the excitation level is carefully chosen close to the threshold, e.g. 0.65MPa, before the 

response reaches saturation.  

At lower frequencies, subharmonic response is more complex than what we found in free microbubbles 

in KS11; often at the same frequency ratio 0

0/f f  one finds monotonic decrease or nonmonotonic 

variation depending on the excitation amplitude. In Figure 3, we plot the same quantities as in Figure 2 

but at a lower frequency ratio 0

0/ 1.3f f  . Note that unlike Figure 2 (a) ( 0

0/ 2.3f f  ), here subharmonic 
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threshold increases with increasing ambient pressure (Figure 3a), which gives rise to monotonically 

decreasing subharmonic response in Figure 3(b) for low excitation amplitudes 0.34 MPa and 0.37 MPa. 

For higher excitation levels the response becomes nonmonotonic because at those excitation levels, after 

reaching saturation  subharmonic tends to precipitously fall and disappear (Figure 3a), e.g. at zero 

overpressure, there is no subharmonic beyond 0.45MPa.   

  

Figure 3.  Subharmonic response of Sonazoid contrast agent ( 0

0R = 3 m) varying with excitation 

pressure (a) and with ambient over pressure (b) at 0

0/f f =1.3 according to EEM model. 

 

Figure 4. Subharmonic threshold of Sonazoid contrast agent ( 0

0R = 3 m) as a function 

frequency ratio according to EEM. 
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The reversal of trends in subharmonic thresholds with ambient overpressure in high and low frequency 

ratios is shown in Figure 4. For lower frequencies, the subharmonic threshold increases with ambient 

pressure, while for higher frequencies above 0

0/ 2.0f f  the trend reverses. The crossing of the threshold 

curves can be explained by noting that resonance frequency 0f  increases over 0

0f  with ambient pressure 

increase. Therefore plotting the curve here as a function of 0

0/f f  instead of 0/f f shifts the curves for 

higher ambient pressure to higher values of the abscissa, resulting in the crossing near  0

0/ 2.0f f   when 

the curves sharply rise with increasing frequency. The increase of subharmonic response with increasing 

ambient pressure for larger frequency ratios therefore can be related to threshold being lower at higher 

ambient pressure. The lower thresholds for higher overpressures above 0

0/ 2.0f f   allows subharmonic 

response to grow more giving rise to increasing subharmonic with increasing overpressure. For frequency 

ratios below the crossing, the opposite happens. 

  

Figure 5.  Subharmonic response of Sonazoid contrast agent varying with excitation pressure (a) and 

with ambient over pressure (b) at 0

0/f f =1.3 ( 0

0f = 4.2 MHz) with 0

0R  =1.6 m according to EEM 

model. 
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Figure 6.  Subharmonic response of Sonazoid contrast agent varying with excitation pressure (a) and 

with ambient over pressure (b) at s = 3.0×10-8Ns/m with 0

0R  =3.0 m according to EEM model. 

 Effects of encapsulation damping and radius  

The difference between the behaviors of free microbubbles described in KS11 and encapsulated ones here 

primarily arises due to the fact that in contrast to free microbubbles, encapsulated microbubbles experience 

large shell damping, which significantly change the behavior. Most importantly, the range of excitations 

over which one gets subharmonic increases substantially. As was noted in our previous publication, 

damping due to encapsulation is the largest and increases with increasing surface dilatational viscosity s  

and decreasing radius (Katiyar and Sarkar, 2012). In order to investigate this effect, we consider two 

conditions at 0

0/ 1.3f f  . In Figure 5, we investigate the subharmonic response from a Sonazoid bubble 

of radius 1.6 m, which is also the number average radius of this contrast agent.  In Figure 6, we consider 

a Sonazoid microbubble of the radius 3 m, but higher s = 1.2×10-8Ns/m. In both cases, due to the 

enhanced damping, the range of excitation pressures where one gets subharmonic response is wider; the 

curves cross at higher excitation. As a result, unlike in Figure 3, at the frequency ratio 0

0/ 1.3f f  , one 

obtains both decreasing and increasing subharmonic response with increasing overpressure depending on 

the excitation amplitude.  
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Figure 7. Subharmonic threshold according to Church-Hoff  ( 0

0f =1.8 MHz) and Marmottant      ( 0

0f

=1.176 MHz) models for 0

0 3.0R m . 

B. Effects of different rheological models 

Figures 7 plots subharmonic thresholds as a function of frequency ratio for CH and MM models 

respectively. The curves are similar as in Figure 4 with different overpressures crossing around 

0

0/ 2.0f f  .  Correspondingly, we plot in Figures 8 and 9 subharmonic variation with overpressure at a 

lower and a higher frequency ratio.    
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Figure 8.  Subharmonic response of the contrast agent varying with ambient overpressure for (a) 0

0/f f

=1.2 and (b) =2.4 according to Church-Hoff model.  

 

  

Figure 9.  Subharmonic response of the contrast agent varying with ambient overpressure for (a) 0

0/f f

=1.2 and (b) =2.4 according to Church-Hoff model. 

 We notice that behaviors are similar to the EEM. At lower frequency ratios (Figure 8a and 9a), 

subharmonic response decreases or varies nonmonotonically with ambient overpressure, whereas, for 

higher frequency ratios 0

0/ 2.0f f   it increases with increasing ambient overpressure. For lower 

excitation pressures the rise in subharmonic is steeper indicating an optimum range for subharmonic based 

pressure estimation.  

  

IV. Conclusion and Summary 

We investigate subharmonic response of a contrast microbubble as a function of ambient overpressure. 

We use three different interfacial rheological modelsstrain softening exponential elasticity model 

(EEM), Church-Hoff model (CH) and Marmottant mdoel (MM). Different models produce qualitatively 

similar result. Therefore the Subharmonic variation with ambient pressure seen here is robust. It shows 

that the subharmonic response can either decrease, increase or vary nonmonotonically with increasing 



17 
 

ambient pressure. There are important differences between behaviors of free and encapsulated 

microbubbles primarily because of the enhanced damping due to encapsulation which effectively 

increases the range of excitation for subharmonic response. For excitation frequency far higher than twice 

the resonance frequency of the microbubble, one obtains subharmonic increasing with overpressure, as 

was also the case for free microbubbles. But for lower excitation frequencies, one can obtain all possible 

trends depending on excitation pressure. The results indicate that one needs to carefully optimize the 

excitation frequency and amplitude for optimum performance and robustness of subharmonic emission 

based pressure estimation. Operating close to the excitation threshold, one can obtain higher sensitivity.         
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Figure Captions 

Figure 1.  (a) Subharmonic response of Sonazoid microbubble (
0

0R = 3 m) as a function of 
0

0/f f  ( 0

0f = 1.76 

MHz). Subarmonic response as a function of ambient overpressure at excitation amplitude 0.34 MPa (b), 0.38 

MPa (c) and 0.44 MPa (d) according to EEM model.   

Figure 2.  Subharmonic response of Sonazoid microbubble ( 0

0R = 3 m) varying with excitation 

pressure (a) and with ambient over pressure (b) at 0

0/f f =2.3 according to EEM model.   

Figure 3.  Subharmonic response of Sonazoid contrast agent ( 0

0R = 3 m) varying with excitation pressure 

(a) and with ambient over pressure (b) at 0

0/f f =1.3 according to EEM model. 

Figure 4. Subharmonic threshold of Sonazoid contrast agent ( 0

0R = 3 m) as a function frequency ratio 

according to EEM. 

Figure 5.  Subharmonic response of Sonazoid contrast agent varying with excitation pressure (a) and 

with ambient over pressure (b) at 0

0/f f =1.3 ( 0

0f = 4.2 MHz) with 0

0R  =1.6 m according to EEM 

model. 

Figure 6.  Subharmonic response of Sonazoid contrast agent varying with excitation pressure (a) and 

with ambient over pressure (b) at s = 3.0×10-8Ns/m with 0

0R  =3.0 m according to EEM model. 

Figure 7. Subharmonic threshold according to Church-Hoff  ( 0

0f =1.8 MHz) and Marmottant      ( 0

0f

=1.176 MHz) models for 0

0 3.0R m . 

Figure 8.  Subharmonic response of the contrast agent varying with ambient overpressure for (a) 0

0/f f

=1.2 and (b) =2.4 according to Church-Hoff model.  

Figure 9.  Subharmonic response of the contrast agent varying with ambient overpressure for (a) 0

0/f f

=1.2 and (b) =2.4 according to Church-Hoff model. 

 


