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Drops in a shear flow experience shear-induced diffusion due to drop–drop interactions.
Here, the effects of medium viscoelasticity on shear-induced collective diffusivity are
numerically investigated. A layer of viscous drops suspended in a viscoelastic fluid was
simulated, fully resolving each deforming drop using a front-tracking method. The collec-
tive diffusivity is computed from the spreading of the drop layer with time, specifically a
one-third scaling, as well as using an exponentially decaying dynamic structure factor of
the system of drops. Both methods led to matching results. The surrounding viscoelasticity
was shown to linearly reduce the diffusion-led spreading of the drop layer, the effect being
stronger for less deformable drops (low capillary number). Because of the competition
between the increasing effect with capillary number (Ca) and the decreasing effect with
Weissenberg number (Wi), collective diffusivity vanishes at very low Ca and high enough
Wi. The physics behind the hindering effects of viscoelasticity on shear-induced diffusion
is explained with the help of drop–drop interactions in a viscoelastic fluid, where shear-
induced interaction leads to trapping of drops into tumbling trajectories at lower Ca and
higher Wi due to viscoelastic stresses. Using the simulated values, phenomenological
correlations relating the shear-induced gradient diffusivity with Wi and Ca were found.

Key words: emulsions, drops, rheology

1. Introduction
Particles suspended in a shear flow experience diffusion because of irreversible
hydrodynamic interactions between particles. This shear-induced diffusion plays a vital
role in the rheology of a suspension or emulsion. It appears in two different forms.
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In a suspension/emulsion, particles constantly interact with each other, and a tagged
particle performs a random walk-like motion with its position varying with time as
〈x · x〉 = 6Dst, Ds being the self-diffusivity (Acrivos 1995), which is present even in a
uniformly mixed suspension or emulsion. Additionally, in the presence of a gradient of
particle volume concentration φ, a smoothing of the gradient with a diffusive flux −Dc∇φ
(Dc being gradient/collective diffusivity) occurs (Rallison & Hinch 1986; Grandchamp
et al. 2013). The shear-induced diffusion is key to understanding enhanced mixing in
process industries (Lopez & Graham 2008), lowering the effective viscosity and pressure
drop in particle flow through a channel (Acrivos 1995), blunting of the velocity profile
in a channel flow (Koh et al. 1994) and distribution of blood cells in vessels to produce
a cell-free layer (Grandchamp et al. 2013). More recently, shear-induced diffusion has
also been successful in effectively separating circulating tumour cells from blood using a
microfluidic set-up (Zhou et al. 2018, Zhou & Papautsky 2019). Recently, we computed the
shear-induced collective diffusivity in an emulsion of viscous drops in a viscous medium
(Malipeddi & Sarkar, 2019a,b). Here, we compute the same in a viscoelastic medium.

Following the pioneering work of Eckstein et al. (1977) measuring self-diffusivity from
the lateral displacement of individual particles in a Couette flow, many experimental and
theoretical works have investigated various aspects of shear-induced diffusion in different
flow conditions. A detailed review of previous work relating viscous suspension and
emulsion can be found in our previous article (Malipeddi & Sarkar, 2019a,b). There were
very few experimental measurements of shear-induced collective diffusion in viscous
emulsions (King & Leighton 2001; Hudson 2003), which we discussed and successfully
compared with in our previous article (Malipeddi & Sarkar, 2019b). Shear-induced
diffusion depends on many factors such as particle properties – size, deformability,
roughness, concentration, fluid properties – viscosity, density and viscoelasticity, as
well as inertia and wall effects, as do single particle motion and particle interactions.
Specifically, pair interactions between rigid smooth spheres in Stokes flow are reversible,
i.e. two colliding spheres return to their original streamlines, requiring at least three
particle interactions to break the symmetry (Marchioro & Acrivos 2001). The above
symmetry is broken by one of many factors, such as deformability (Loewenberg & Hinch
1997), inertia (Kulkarni & Morris 2008), magnetic effects (Roure & Cunha 2018) or
particle roughness (da Cunha and Hinch 1996). Note that, in a particle suspension, time
reversibility is seen to be violated due to the chaotic nature of the dynamics (Marchioro &
Acrivos 2001). Many of the earlier works have been devoted to understanding shear-
induced diffusion of rigid particles in viscous suspensions. Only a few studies have
reported rheological studies of viscoelastic emulsions (Zenit & Feng 2018). Recently,
interest has grown in using the viscoelastic properties of a suspending fluid to focus
targeted particles and cells in microchannels (Zhou & Papautsky 2020). The first normal
stress difference and shear-dependent viscosity play critical roles in the effective focusing
of particles in channels of different cross-sections. Fluid viscoelasticity results in the
formation of chain-like structures of particles in shear flow that are absent in viscous
flows (Won & Kim 2004; Scirocco, Vermant et al. 2004; Pasquino, Panariello et al. 2013)
and promotes alignment of particles along the flow direction where the line joining three
particles aligns along the flow direction (Choi & Hulsen 2012; Jaensson et al. 2016).

To our knowledge, there has not been a systematic study of the diffusion of deformable
particles in viscoelastic emulsions. Kim et al (2000) repeated an earlier measurement
of axial shear-induced gradient diffusion of rigid spheres in a viscous suspension by
Leighton & Acrivos (1987) in a high molecular weight polymer (polyacrylamide) solution.
They found that the diffusion decreased with the polymer concentration and the shear
rate. Recently, we have shown that viscoelasticity has significant effects on drop trajectory
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in pair interactions (Tarafder et al. 2022). The usual passing trajectories of a viscous
system, where colliding drops slide past each other, change into tumbling ones in a
viscoelastic system; collision traps them into a binary pair revolving around each other at
low capillary and higher Weissenberg numbers. The tumbling trajectory results from the
presence of a large region of spiralling streamlines around a single drop in a viscoelastic
medium, helping trap the second approaching drop as well as the strong extensional
stresses between drops in the separation quadrant of the collision. This study is motivated
by the importance of such pair interactions on shear-induced diffusion. In this work, we
numerically investigate the collective diffusion in a layer of concentrated viscous drops in
shear at negligible inertia, extending our previous work in a viscous medium (Malipeddi
& Sarkar, 2019a,b) to a viscoelastic medium with varying drop deformability and medium
viscoelasticity. We note that the diffusivities are anisotropic. Similar to our previous
studies, the system chosen here – a layer of drops homogenous in the flow and the vorticity
directions in an unbounded shear – is suited to determining the collective diffusivity in the
shear direction. In § 2, we describe the numerical procedure and discuss the results in § 3.
Finally, we offer concluding remarks in § 4.

2. Mathematical formulation and numerical simulation
The dispersed continuous system is governed by the incompressible momentum
conservation equations for velocity u in the entire domain Ω

∂(ρu)
∂t

+ ∇ · (ρuu)= ∇ · τ −
∫
∂B

dxBκnΓ δ(x − x B), (2.1)

∇ · u = 0. (2.2)

The total stress τ has pressure, viscoelastic and viscous parts

τ = −p I + T p + T v, T v =μs D, (2.3)

where p is the pressure, μs is the solvent viscosity and D = (∇u)+ (∇u)T is twice
the deformation rate tensor. The superscript T represents the transpose and T p is the
viscoelastic stress due to the presence of polymer. In (2.1), ρ is the density, Γ is the surface
tension (constant) along the drop surface ∂B consisting of x B points, κ is the local
curvature, n is the outward normal and δ(x − x B) is the three-dimensional Dirac delta
function. We use a modified Chilcott–Rallison-type (Chilcott & Rallison 1988; Matos et al.
2009) constitutive equation (also called the finite extensible nonlinear elastic modified
Chilcott–Rallison or FENE-MCR) to model the viscoelasticity of the continuous phase.
In our investigations of the effects of viscoelasticity, we have always chosen simple
constitutive equations to explain the underlying physics. Unlike the Oldroyd-B equation
used in our earlier studies (Aggarwal & Sarkar, 2007, 2008a,b; Mukherjee & Sarkar 2009,
2010), the FENE-MCR model in our recent studies (Mukherjee & Sarkar 2011, 2014) has
a finite extensible viscosity; like Oldroyd-B, it has a constant shear viscosity. It has been
extensively used in modelling different viscoelastic flows (Szabo et al. 1997; Ramaswamy
& Leal 1999; Dou & Phan-Thien 2003; Kim et al. 2005). Furthermore, this constant
viscosity viscoelastic model is applicable to a Boger fluid, which is also routinely used
in experiments to investigate viscoelastic behaviours. e.g. for pair interactions between
spheres in Boger fluids (Snijkers et al. 2013). Details of the implementation can be found
in our previous work (Mukherjee et al. 2022; Tarafder et al. 2022). The viscoelastic stress
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is determined by a simple rate type of equation,

∂T p

∂t
+

{
u · ∇T p − ∇u · T p − T p · ∇uT

}
+ f

λ
T p = f

λ
μp D, f =

L2 + λ

μp

(∑
T p

ii

)
L2 − 3

.

(2.4)
Here, μp is the polymeric viscosity, λ the relaxation time and L the finite extensibility,

introduced by the FENE-CR model, which limits the maximum length of the end-to-
end vector for the polymer molecule. In the limit of L → ∞ we obtain the Oldroyd-B
equation with f → 1 in (2.4). We use L = 20, increasing which was shown to make little
difference to the results (Mukherjee & Sarkar 2013). We have provided additional details
about the modified FENE-MCR model, noting that the nonlinearity does not affect the
linear viscoelastic response, and results in a finite extensional viscosity and a constant
shear viscosity (Oliveira 2003; Tarafder et al. 2022). In spite of its simplicity, we feel that
the model is appropriate for the present purpose of explaining a phenomenon. However,
note that shear thinning may qualitatively influence the problem of the particle dynamics
in a viscoelastic medium. Studies of shear-induced string-like structure formation in a
viscoelastic particulate flow have found no such structure in non-shear-thinning Boger
fluids (Scirocco et al. 2004, Won & Kim 2004). Equations (2.1) and (2.2) along with
the viscoelastic constitutive equation (2.4) are solved by a semi-implicit finite difference
projection method in a Cartesian domain. An alternating direction implicit scheme is
applied to ease the restriction on the time step. A multigrid method is used to solve
the pressure position equation. A semi-analytic time integration method is used, which
automatically achieves an elastic viscous stress splitting, alleviating some of the numerical
stability issues common to viscoelastic numerical schemes (Sarkar & Schowalter 2000;
Izbassarov & Muradoglu 2015). Details of the implementation of the above algorithm can
be found in Li & Sarkar (2005), Aggarwal & Sarkar (2007) and Mukherjee & Sarkar
(2013).

The simulation details for computing the shear-induced collective diffusivity are
identical to our previous publications on viscous systems (Malipeddi & Sarkar 2019a,b,
2021). A total of N = 70 drops with radius a are placed in a random configuration in
an initially compact layer at the middle (width ∼ 0.2 L y) of the computational domain
(figure 1) of size L y = 28a in the velocity gradient direction (y) and Lx = Lz = 14a
along the flow (x) and the vorticity (z) directions, leading to an initial volume fraction
of ∼25 % in the compact layer. The independence of the result on domain dimensions,
drop numbers and initial compact layer volume fractions (in the range of ∼25 %–43 %)
has been investigated in a previous study of a viscous system (Malipeddi & Sarkar 2019b),
indicating that the current configuration is sufficient for the simulation. Specifically, the
domain length of 28a along the velocity gradient direction has been shown to be sufficient
to neglect any wall effects (results differed negligibly from those obtained with a domain
length of 42a). Note that this approach differs from previous studies of hydrodynamic
diffusivities (King & Leighton 2001; Hudson 2003), where drops uniformly distributed
between walls experience competing effects of shear-induced diffusion and wall-induced
migration. The computational domain is discretised with 96 × 192 × 96 grid points
(∼14 grid points per drop diameter), which was shown to be sufficient in our earlier studies
(Srivastava et al. 2016). The top and the bottom walls move with equal and opposite
velocity U to obtain a shear rate γ̇ = 2U/L y . Initially, the drops are placed in a fully
developed shear flow (appropriate for Stokes flow) with no polymeric stresses. Periodic
boundary conditions have been applied in the x and z-directions. The drop layer has a
homogeneous distribution along the x and z directions. The drop radius a and the inverse
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u

–u

Figure 1. Schematic of the computational set-up.

shear rate γ̇−1 are used as the length and the time scales to define the Reynolds number
Re = ρm γ̇ a2/μm , capillary number Ca =μm γ̇ a/ and Weissenberg number Wi = λγ̇ .
The viscosity ratio λμ =μd/μm and the density ratio λρ = ρd/ρm have been kept at unity.
The polymeric to total matrix viscosity ratio β =μpm/μm is fixed at 0.5 (in Appendix,
we briefly investigated the effects of β variation). Subscripts m and d denote fluid and
drop phases, respectively. The total viscosity of the surrounding fluid μm comprises the
polymeric and the solvent viscosities μm =μsm +μpm . Because of the explicit nature
of the code and thereby the diffusion limitation on time stepping, Re has been kept to
0.1 as a proxy for Stokes flow. We have previously shown it to be sufficient for matching
with boundary element simulation of Stokes flow of viscous emulsions (Srivastava et al.
2016). Note that the front-tracking implementation is a smoothed-interface method, with
the drop’s surface moving with the local velocity interpolated from the Eulerian grid to the
Lagrangian drop front, naturally avoiding interpenetration; no physical drop coalescence
is considered. The above code was run with the help of George Washington University’s
High Performance Computing cluster PEGASUS.

The shear-induced collective diffusion of the drops in an unbounded shear (ensured by
a large enough computational domain; see above) leads to a spreading of the initial layer
of drops concentrated in the y-direction (homogeneous in the other two directions). It is
governed by a coarse-grained one-dimensional diffusion equation for the drop volume
fraction φ(y, t) (Hudson 2003)

∂φ

∂t ′
= ∂

∂y′

(
Dc

yy (φ)

γ̇ a2
∂φ

∂y′

)
, (2.5)

where Dc
yy = γ̇ φa2 f2 is the collective diffusivity coefficient, which is a function of local

volume fraction φ(y, t) and f2 is the non-dimensional collective diffusivity. The imposed
unbounded shear here eliminates the advection term due to drop migration found in
Hudson (2003). As has been discussed in detail in our previous article (Malipeddi &
Sarkar, 2019b), the linear dependence of Dc

yy on the volume fraction φ is predicated on
the dominance of the pairwise interactions validated a posteriori by the simulation results
(also see Malipeddi & Sarkar, 2019a, 2021). We have shown that f2 does not change with
changing initial compact layer volume fraction (in the range of 25 %–43 %). Equation
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(2.5) for a fixed number of particles spreading by diffusion yields a self-similar parabolic
volume fraction (Grandchamp et al. 2013)

ψ (η)= (
f2t ′

)1/3
φ =

(
b − η2/6

)
, η= y′/

(
f2t ′

)1/3
, (2.6)

with b as a free parameter, showing a 1/3rd scaling of the half-width w of the profile with
time

w3 −w3
o = K t ′, K = 9 f2 N0/

(
4
√

2
)
, N0 =

∫
φ

(
y′, t ′

)
dy′, (2.7)

allowing determination of f2. Here, wo is the initial width and N0 is a conserved
quantity representing the number of drops diffusing out from a layer, calculated as
N0 = N V/aLx L y . Malipeddi & Sarkar (2019b) have identified an alternative half-width
w computed from the drop positions y′

i , i = 1, . . . , N

w=
√√√√ 1

N

N∑
i=1

(
y′

i −μ
)2
, μ= 1

N

N∑
i=1

y′
i . (2.8)

It can be related to the first moment of the analytical solution (2.6) leading to

w3 −w3
0 = K ′t ′, K ′ = 9 f2 N0/

(
10

√
5
)
. (2.9)

Using either expression for finding f2 led to identical results within estimation
uncertainties (Malipeddi & Sarkar, 2019b). However, the second method avoids the
intermediate step of obtaining the coarse-grained volume fraction from the drop location.
We plot w3 −w3

0 vs. t ′(= t γ̇ ) and calculate the slope to find the collective diffusivity. The
simulations are run up to t ′ ∼ 180 inverse shear unit times and t ′ ≤ t ′0 = 20 is discarded
to make sure the drops are deformed and a linear region of w3 −w3

0 vs. t ′ is reached.
Here, w0 represents drop layer width at t ′ = t ′0. Similar to Malipeddi & Sarkar (2019b), the
time evolution data excluding the initial transient are divided into smaller overlapping time
intervals (∼80 non-dimensional times) with f2 computed in each of them; their average is
reported as an ensemble average with corresponding standard deviation as the uncertainty
in its estimation. Previously, we have shown that f2 does not depend on the initial volume
fraction (in the range of ∼25 %–43 %) of the drop layer (Malipeddi & Sarkar, 2019b).

Shear-induced particle diffusivity, both self and gradient (or collective), can also be
obtained from the dynamic structure factor (Rallison & Hinch 1986; Morris & Brady
1996; Marchioro & Acrivos 2001; Leshansky & Brady 2005, Leshansky et al. 2008). The
dynamic structure factor has been useful for particle sizing in dynamic light scattering
techniques, where the scattering of a monochromatic laser from the suspension volume
is analysed to obtain the fluctuation autocorrelation. The exponential decay time of the
autocorrelation is related to the diffusivity, which in turn is related to the particle size.
Measurement of gradient diffusivity using the dynamic structure factor has previously
been performed in homogeneous suspensions where the decay of spontaneously appearing
fluctuation underlies the wavenumber or scale-dependent diffusivities. However, we have
convincingly demonstrated that it can be used in a non-homogeneous system such
as the centrally packed layer considered here to get useful information. It offered an
excellent match with the diffusivity obtained by the continuum diffusion equation method
(Malipeddi & Sarkar, 2019a,b, 2021). A detailed description of the method, including a
discussion of the various issues arising from inhomogeneity of the system, has been given
in Malipeddi and Sarkar (Malipeddi & Sarkar, 2019a). Briefly, the method is based on the
particle autocorrelation function in the Fourier (k wavenumber) space of N drops located
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at x′
α(t

′), α = 1, 2, . . . , N

F
(
k, t ′

) = 1
N

〈 ∑N
α,β=1 ei k·(x′

α(t
′)−x′

β(0))
〉
,

n
(
x′, t ′

) = ∑N
α=1 δ

(
x′ − x′

α

)
, n̂

(
k, t ′

) = ∑N
α=1 ei k·x′

α .

(2.10)

It can be shown that the number density n(x′, t ′) satisfies an advection-diffusion
equation (Leshansky & Brady 2005)

∂n

∂t
+ (

U + Γ̇ · x
) · ∇n = Dc∇2n (2.11)

in a shear flow U + Γ̇ · x (U is the average flow and Γ̇ is the velocity gradient tensor),
with the diffusivity in the gradient direction being related to F(k, t ′) as

Dc
yy = − 1

k2
d (ln F)

dt ′
. (2.12)

Note that, as noted in our previous publication (Malipeddi & Sarkar 2019b). the
advection term in (2.11) does not affect the dynamics in a simple shear due to the
orthogonality of the k (= k ŷ) vector to the velocity field. We showed before that, even in
this initially non-homogeneous system, the method can be applied to obtain a meaningful
diffusivity Dc

yy in the limit of k → 0 which can be matched with the results obtained from
the continuum method described before. Note that, similar to the two different methods to
compute f2 described before, the autocorrelation can also be computed either directly from
the particle positions (2.10) or using the coarse-grained volume fraction φ(y, t) satisfying
the continuum (2.5). Both were shown to yield the same Dc

yy (Malipeddi & Sarkar 2019b).
To compute F(k, t ′), signals for t ′ < t0 are discarded and the rest are used to calculate the
autocorrelation in 80 % overlapping intervals. They are averaged with the corresponding
standard deviation used as an error of estimation. We will compare the gradient diffusivity
represented by f2 and Dc

yy .

3. Results
Previously, we offered a detailed comparison with the existing literature on hydrodynamic
diffusivities for viscous systems (Malipeddi & Sarkar 2019a,b, 2021). Specifically, our
computed collective diffusivity compared favourably with the experimental measurement
(Hudson 2003; Malipeddy & Sarkar 2019b) found by the computed collective diffusivity
matching with the zero capillary number limit of Ramachandran et al (2010) and it is 8–9
times higher than the self-diffusivity computed by Boundary Element Method simulations
of Loewenberg and Hinch (1997), in conformity with the theoretical prediction of da
Cunha and Hinch (1996). We are not aware of any studies of hydrodynamic shear direction
collective diffusivities of drops in a viscoelastic medium. Specifically, figures 2 and 3 show
snapshots of a layer of closed-packed drops spreading with time in the velocity gradient
direction due to shear-induced diffusion. In figure 2, for Ca = 0.2, both Wi = 0.0 and 2.0
cases show that the drops spread in the shear direction due to diffusion, with the spreading
being less for the higher Wi (= 2.0) case. We observe that, at the same time instant, drops
are more deformed and inclined in the flow direction for Wi = 2.0 compared with Wi = 0.0,
leading to less spreading of the layer for the more viscoelastic case. In our previous study
of viscous emulsion, we noted that shear-induced collective diffusivity is a non-monotonic
function of Ca due to the competing effects of increased drop deformation and stronger
alignment with the flow at higher Ca. At a lower Ca = 0.02, decreased deformation leads
to smaller diffusion in a viscous emulsion (Malipeddi & Sarkar 2019b) as can also be
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Ca = 0.2

Wi = 0.0

Wi = 2.0

t′

(a)

(b)

Figure 2. Spreading of drops in the velocity gradient direction at Ca = 0.2 for Wi = 0.0 (a) and Wi = 2.0 (b).

Ca = 0.02

Wi = 0.0

Wi = 2.0

t′

(a)

(b)

Figure 3. Spreading of drop emulsion in the velocity gradient direction at Ca = 0.02 for Wi = 0.0 (a) and
Wi = 2.0 (b).

seen in figure 3. The lower Ca also further strengthens the viscoelastic effects, leading to
near elimination of diffusion at higher Wi = 2.0. The thickness of the compact layer of
drops nearly retains its original value, although drops are constantly interacting with each
other, changing their positions. As discussed below, the decreased diffusion of drops with
increasing viscoelasticity of the surrounding medium (more prominent at lower Ca) can be
explained by our previous study of pair interaction between drops in a viscoelastic medium
(Tarafder et al. 2022). It showed that surrounding viscoelasticity results in high extensional
stresses between separating drops. Furthermore, the elastic tension around a drop created
a larger region of spiralling streamlines, eventually trapping a second drop into tumbling
trajectories at high Wi and low Ca values. These characteristics of pair interaction led to
decreased separation between drops at low Ca and high Wi seen here.

In figures 4(a) and 4(b), we show the Taylor deformation D = (L − B)/(L + B)
(assuming approximately an ellipsoidal shape of the deformed drop; L and B are the
major and minor axes, respectively) and inclination angle averaging over all drops for
Ca = 0.2 and Ca = 0.02. They show a larger deformation and stronger alignment with the
flow for the larger Ca, as expected. We also show that drop deformation and inclination
angle decrease with Wi (also see Aggarwal & Sarkar 2007, 2008a). The noise in drop
deformation and inclination angle indicates frequent interactions with neighbours. At
higher Ca, we note a slightly increased drop deformation and alignment towards the
flow at higher viscoelasticity, which may facilitate drops passing each other, thereby
reducing the post-collision separation in the velocity gradient direction and the shear-
induced diffusivity. On the other hand, at lower Ca, the drop deformation is small and
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Figure 4. Average drop deformation and inclination angle for (a) Ca = 0.2, and (b) Ca = 0.02.

does not show significant dependence on Wi. Note that this is consistent with our earlier
finding that, rather than drop shapes, the flow around them impacts the pair interaction
in a viscoelastic medium; effects of viscoelasticity are maximal at lower Ca, where
deformation is minimal. Rather than the deformability, the viscoelastic hindering of drop
separation is the dominant effect in determining the diffusivity, indicating similar physics
for rigid particles as well. Similar spiralling streamline patterns were seen around a rigid
sphere in a viscoelastic fluid (D’Avino et al. 2008). Our previous pair-interaction study
(Tarafder et al. 2022) also found hindered drop separation at an increased viscosity ratio,
indicating reduced shear-induced diffusion in the limit of rigid spheres at an infinite
viscosity ratio.

In figure 5, we plot drop positions vs. time, showing a random walk-like individual
drop motion. At Ca = 0.2, for both Wi = 0.0 and Wi = 2.0, drop positions spread in the
velocity gradient direction with time. However, for Ca = 0.02 and Wi = 2.0, the spreading
is minimal, indicating no diffusion along the shear direction (as we have also seen in
figure 3 bottom panel).

Figure 6 shows the concentration profile of the drop layer at three different times.
Figures 6(a) and 6(b) show the cases when drops are more deformable, Ca = 0.2. For
both Wi = 0.0 and 2.0, the parabolic concentration profile spreads with time, indicating
collective diffusion, the spreading being lower for Wi = 2.0 compared with Wi = 0.0 due to
increased drop deformation and resulting stronger alignment with the flow, in conformity
with figure 5.

Figures 6(c) and 6(d) show the case for a low Ca = 0.02 when the drops are less
deformable and nearly retain their spherical shape (figure 3). The concentration profiles
of the drop layer at Ca = 0.02, Wi = 0.0 (viscous case) at different times are similar to
the viscous case at Ca = 0.2 but with a slower spreading of the layer thickness (see also
figure 5), i.e. lower diffusivity, also seen before (Malipeddi & Sarkar, 2019b). However,
for the viscoelastic case (Wi = 2.0) (figure 6d), the concentration profile of the drops
shows negligible change, indicating minimal diffusion at lower Ca and higher Wi as we
saw in figures 3 and 5. In the insets of figure 6, we plot the concentration profile for
each case using scaled variables showing approximate collapse of profiles from different
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Figure 5. Drop position vs. time at Ca = 0.2 (a,b) and Ca = 0.02 (c,d) for viscous and viscoelastic cases.

time instants to a single curve, in conformity with (2.6), except for the low deformable
(Ca = 0.02) high viscoelastic (Wi = 2.0) case (figure 6d). For this case, profiles from
different time instants in the original (non-scaled) variables show little variation over
time, indicating minimal diffusion. Therefore, scaling the variables with time rather than
collapsing them to a single curve separates them.

As noted before, in our recent work (Tarafder et al. 2022) we have shown that increasing
viscoelasticity of the surrounding fluid reduces post-collision separation of streamlines of
passing drops, eventually trapping them in tumbling trajectories at low Ca and high Wi,
where the drops do not separate but rotate around the centre of the line joining them.
The transition from a passing to a tumbling trajectory was ascribed to the presence of a
large region of spiralling streamlines around a single drop in a viscoelastic shear flow,
which traps the approaching second drop. The hoop stress due to the first normal stress
difference around the spherical drop (at lower Ca) generates the region of spiralling
streamlines. We provided a perturbative theory for the effects of the first normal stress
difference in determining the region of the spiralling streamlines that approximately
explains the scaling of the critical Ca vs. Wi curve delineating the transition from passing
to tumbling trajectories at low Ca and high Wi. We also showed that, during the separation
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Figure 6. Concentration profile of drops at different non-dimensional times for Ca = 0.2 (a, b) and Ca = 0.02
(c, d) for viscous (a, c) and viscoelastic (b, d) cases. Lines are best-fitted parabolas. Insets show concentrations
at the same time instants (same colours) scaled with t1/3 (as per (2.6)) collapsing to a single curve due to
self-similar evolution.

of interacting drops, high polymeric stresses develop in the separation quadrant, hindering
their separation. The decreased separation between drops is the primary driving force
hindering the shear-induced diffusion of drops seen here retaining their original compact
configuration (figures 3b, 5d, 6d) and leading to almost zero spreading at this high Wi and
low Ca case.

In figure 7, following (2.9), we plot the cube of the width of the concentration profile
with time, Ca = 0.2 and Ca = 0.02 for different Wi values, showing the t ′1/3 scaling
noted before (best fitted lines are shown). The rate of spreading indicated by the slope
of the curves decreases with increasing Wi for both Ca values. For Ca = 0.02, the slope
eventually goes to zero at Wi = 2.0, indicating zero diffusion. We calculate the collective
diffusivity f2 according to (2.9) from the slope and plot it in figure 8(a) for various Ca as
a function of Wi. The fitted curves show an approximate linear scaling of f2 with Wi for
all the Ca values we have studied. The corresponding plot of f2 with Ca for different
Wi values is shown in figure 8(b). As noted in Tarafder et al. (2022), the effects of
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Figure 7. Width of drop layer as a function of time at Ca = 0.2 (a) and Ca = 0.02 (b) for different Wi’ values.
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Figure 8. Collective diffusivity varying with Wi for various Ca (a) and varying with Ca for various Wi (b).

surrounding fluid viscoelasticity on pair interaction are complex, resulting from the flow
field around the drops determined by the viscoelastic stresses competing with the imposed
shear flow (Aggarwal & Sarkar, 2008a). The dynamics resulted in the emergent linear
decay seen in figure 8(a) (Appendix briefly considers the effects of β showing that f2
decays approximately linearly with Wiβ). The non-monotonic variation of f2 seen here
with Ca for the viscous case (Wi = 0) was also noted in Malipeddi & Sarkar (2019b).
The diffusion increases with increasing Ca initially due to increased deformation, but it
decreases at higher Ca because of increased alignment with the flow direction, facilitating
the sliding of drops. At higher Wi, this non-monotonicity is subdued by viscoelasticity.

After computing the collective diffusivity from the layer thickness, (2.8) and (2.9), we
compute it using the dynamic structure factor, (2.12). It has been plotted as a function of
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Figure 9. (a) Value of −k2 ln F as a function of time for different k. (b) Slopes of curves in (a) for different Wi.
(c) Value of Dc

yy vs. Wi for different Ca. (d) Value of Dc
yy vs. Ca for different Wi (the stars represent 0.0753f 2

for comparison).

time in figure 9(a) for different k at Ca = 0.2, showing linear growth with time, which
tends to a common line as k → 0. Figure 9(b) plots the slope of the curves in figure 9(a)
for different Wi values, displaying a slow variation with wavenumber k, but reaching
a limiting value Dc

yy as k → 0, as we saw also for viscous cases (Malipeddi & Sarkar
2019a,b) and with red blood cells (Malipeddi & Sarkar 2021) (see the discussion in § 2).
Figures 9(c) and 9(d) show that Dc

yy vs. Wi for different Ca values and Dc
yy vs. Ca for

different Wi values show identical natures as f2 plotted in figure 8. As noted before,
the dynamic structure factor is typically applied to a homogeneous system of a certain
(unchanging) volume fraction. There, the wavenumber-dependent gradient diffusivity is a
property of the spontaneously appearing fluctuation at the length scale corresponding to
that wavelength. Here, we computed the dynamic structure factor in a non-homogeneous
system with continually changing volume fraction of the drop layer, preventing direct
comparison with f2. However, noting the relationship Dc

yy = γ̇ φa2 f2, we numerically
find a fit Dc

yy/γ̇ a2 f2 = φ = 0.0753 for an overall average volume fraction scale of ∼0.1
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Figure 10. Variation of f2 (a) and Dc
yy (b) as functions of Ca and Wi.

during the entire time evolution. It led to a good match between the two computations in
figure 9(d).

Finally, figures 10(a) and 10(b) display surface plots of f2 and Dc
yy as functions of Wi

and Ca showing their identical nature. We also independently obtain curve fits for the
surfaces of f2 and Dc

yy in figures 10(a) and 10(b)

f2 = 0.15 − 0.1Wi + 3.25Ca − 0.25WiCa − 7.35Ca2,

Dc
yy/γ̇ a2 = 0.014 − 0.008Wi + 0.22Ca − 0.002WiCa − 0.6Ca2. (3.1)

These relations are approximately consistent with the volume fraction scale
Dc

yy/γ̇ a2 f2 = φ ∼ 0.1 used before in figure 9(d). Note that such correlations as in the
viscous cases (Malipeddi & Sarkar 2019a,b) are purely phenomenological and are based
on the computed diffusivities in the study and are therefore not applicable outside the
range of parameters of that study. Nonetheless, the correlation here is approximately close
to the viscous case in the limit of Wi = 0. In Appendix, we briefly consider the effects of
β variation away from the value of 0.5 studied here.

4. Conclusion
Following our previous investigation of shear-induced gradient/collective diffusion of
viscous drops and red blood cells in viscous media, here, we investigate the effects
of viscoelasticity of the surrounding medium. As before, we use a front-tracking finite
difference method to simulate a compact layer of viscous drops in a shear flow, which
presents a sharp concentration gradient at the layer boundary. The surrounding fluid is
modelled using a FENE-type constitutive equation. The drops undergo shear-induced
collective diffusion because of the concentration gradient and spread in the velocity
gradient direction. The diffusivity is computed using a one-third scaling of the layer width
with time as well as an independent means of a dynamic structure factor approach, both
methods resulting in matching results.

In a viscoelastic fluid, drops spread less, eventually leading to zero diffusion at low
capillary numbers and high Weissenberg numbers. The physics underlying the reduced
diffusion stems from the specific nature of pair interaction in a viscoelastic fluid flow
recently investigated (Tarafder et al. 2022). Fluid viscoelasticity due to polymeric stresses
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changes the local flow field near a drop in a shear flow, hindering post-collision drop-
separation. At higher Wi and lower Ca, tension along streamlines around a spherical drop
creates a region of spiralling streamlines, eventually transitioning a passing trajectory of
drops into a tumbling one where the drops revolve around each other. As a result of this
hindered separation, the drop layer experiences reduced dispersion in the velocity gradient
direction. Shear-induced diffusivity shows a linear decrease with Wi. Appendix briefly
considers the effects of the ratio of polymeric viscosity to the total viscosity β to show
that increasing it further enhances the effects of viscoelasticity.

Shear-induced diffusion is an important factor in industrial flows for enhancing
mixing as well as in microfluidic particle technologies such as particle separation and
flow focusing. This investigation indicates the possibility of using viscoelasticity as
an additional means to control particulate flows in these applications. The range of
capillary numbers (0.01–0.2) studied here aligns well with past experimental observations
and industrial applications involving non-breaking drops. However, Weissenberg number
varies widely in practice depending on the fluid chosen. The current study is limited to
Wi ≤ 2.0, which is sufficient for the current aim to explore the effects of viscoelasticity on
diffusion. The current study is limited to monodisperse viscosity-matched drops in a non-
shear-thinning Boger-type viscoelastic fluid. However, we note that our pair-interaction
study (Tarafder et al. 2022) has shown that increasing the viscosity ratio enhances
viscoelastic hindering of drop separation. It indicates that on increasing the viscosity ratio
in an emulsion, as well as in its infinite limit, a rigid suspension of rigid particles would
experience similar physics and a reduced shear-induced gradient diffusion. This study
adequately demonstrates the first-order effects of the matrix viscoelasticity on the diffusion
of suspended drops. Future work may consider bi/polydisperse emulsions common in
many industrial flows.
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Appendix Effects of β variation
In the interest of brevity and a reasonable computational time for the entire study, we
varied only Ca and Wi to investigate their effects on the shear-induced gradient diffusivity,
keeping all other parameters fixed, including β = 0.5. In this appendix, we briefly consider
the effects of β variation on f2. Figure 11(a) plots f2 for three different values of β.
We note that, except for the lowest value β = 0.1, where the diffusivity values are very
close to the viscous case, the others show an approximately linear decreasing trend with β
similar to the variation with Wi. Note that β signifies the amount of polymer viscosity and
the first normal stress difference in the viscoelastic medium is N1 = 2λμpγ̇

2 with its non-
dimensionalised counterpart N1/μγ̇ = 2Wiβ. Previously, we found that, for the single
drop dynamics in shear, the deformation and inclination for different β values collapsed
to one curve when plotted against Wiβ (Aggarwal & Sarkar, 2007, 2008a). Figure 11(b)
also shows that f2 approximately decreases linearly with this quantity.
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