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An exact solution to the Laplace equation with Dirichlet boundary conditions on a simple boundary is
used in an iterative fashion to study the case of a stochastic rough surface with fractal dimension
D =2+e€. For small €, an analytic expression is derived for the spectrum of singularities f (a) of the gra-
dient of the potential normal to the boundary, using the random multiplier approach. A binomial ap-
proximation to the multiplicative process is shown to severely underestimate f (a) for low values of a.

PACS number(s): 02.50.—r, 44.10.+1i

I. INTRODUCTION

Many problems of physical interest involve fields satis-
fying Laplace’s equation with Dirichlet boundary condi-
tions. Examples include conduction (or diffusion) from a
surface at a fixed temperature (or concentration), poten-
tial flow of an ideal fluid over a body, electric field around
a charged object, etc. For domains bounded by surfaces
that are differentiable almost everywhere, a variety of
methods to solve Laplace’s equation exist. Motivating
the work reported here are the problems of diffusion,
conduction, etc., involving a rough boundary. Such sur-
faces may appear, down to a certain spatial resolution, to
be nondifferentiable everywhere and/or may exhibit con-
volutions over many length scales. Random fractals can
be used as a first-order model for such rough surfaces.
Their apparent complexity is the result of simple rules
that are applied repeatedly at different length scales, and
they can be (partially) characterized by their fractal di-
mension D. Many material surfaces have been reported
to exhibit fractal (geometrically self-similar) behavior and
their dimensions D have been measured.

On the other hand, Laplace’s equation with moving
Dirichlet boundary condition governs diffusion-limited-
aggregation processes (DLA). This has been suggested as
a model for various natural phenomena as diverse as
dielectric breakdown and viscous fingering since it was
first proposed by Witten and Sanders [1]. Computer
simulations and experiments (see, e.g., Feder [2] and
Pietronero and Wiesmann [3]) have shown its fractal di-
mension to be ~1.7 (in two dimensions) and ~2.5 (in
three dimensions). The shape of fractal growth patterns
were studied analytically by renormalization-group
theory [4-6], by fixed-scale transformation [7], and by
numerical simulations [8]. The results of numerical simu-
lations also suggested multifractal behavior of the growth
velocity at different points of the cluster [9]. This veloci-
ty is equal to the gradient of the Laplacian field normal to
the boundary, called (once normalized) the ‘“harmonic
measure.” Multifractal behavior refers to the highly in-
termittent and self-similar structure of this gradient,
caused by the “screening” of the field by the boundary it-
self.

In turbulent shear flows, irrotational (potential) veloci-
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ty fluctuations occur outside the turbulent interface.
Such surfaces have been shown to possess fractal scaling
[10] and their dimension (typically ~7) has been mea-
sured. These are highly unsteady surfaces, where the
boundary condition for the potential flow problem needs
to be prescribed [11,12]. To lay proper ground for future
work on this problem, it is useful for now to consider the
simpler case of a stationary boundary of fractal dimen-
sion D with Dirichlet boundary condition. A consider-
able amount of work exists in this area for deterministic
fractal boundaries, and many interesting results are avail-
able in the mathematics literature [13-17]. The latter
concentrates on upper bounds for the dimension of
the harmonic measure in two- and three-dimensional
domains. Using a more empirical approach, Everstz and
Mandelbrot [18] obtain a numerical solution to the La-
place equation around an exactly self-similar Koch tree
in two dimensions. Their logarithmic rendering of the
calculated potential levels around successive prefractals
illustrates the multiplicative nature of the Laplacian po-
tential, and hence of the harmonic measure. Progressive
refinement of the boundary and the measure supported
on it is used to establish an intuitive connection between
the multifractality of the measure and the underlying
multiplicative process.

In the present study, we construct a self-similar ran-
dom surface, embedded in a three-dimensional domain.
The surface is generated by randomly distributing bumps
(hemispheres) of progressively smaller sizes. Arguably,
such random fractals are more realistic for modeling
rough surfaces than their deterministic counterparts.
The goal of the present study then is to statistically
characterize the gradient of the potential field on this
boundary as completely as possible. Laplace’s equation is
solved perturbatively. Numerical results of Everstz and
Mandelbrot [18] suggested the perturbative method, for
they found numerically that the successive addition of
geometric details affect the larger-scale solution attained
around earlier generations very little. The procedure is
based on the analytic solution of Laplace’s equation for a
single isolated bump placed on an otherwise infinite plane
with a constant flux from the plane. Smaller bumps are
assumed to add a small-scale perturbation on the larger-
scale solution, and the mutual effect between the bumps
of the same generation is neglected. This becomes exact
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in the limit of sparse distribution of bumps and large
difference in size of successive bumps.

In Sec. II, the mathematical formulation of the
boundary-value problem is detailed. Section III presents
a hierarchical generation procedure for the fractal sur-
face. It has two parameters, radius ratio b and covered
area fraction p, and when continued indefinitely this gen-
erates a fractal surface of dimension D. In Sec. IV, the
perturbative procedure is presented, and a multiplicative
solution is obtained. In Sec. V, the multifractal formal-
ism is used to describe the resulting statistics. This is
done using the random multiplier approach. In Sec. VI,
a binomial approximation to the multiplicative process is
attempted and the results are compared to those of the
random multiplier approach. Section VII summarizes
the results and explores the implications on the proper-
ties of the potential field at various distances from the
boundary.

II. MATHEMATICAL FORMULATION

Laplace’s equation will be solved in three dimensions,
with a homogeneous Dirichlet boundary condition on a
fractal surface, which forms the lower boundary of the
domain. This lower boundary is assumed to have infinite
extent in the horizontal direction. The other boundary is
sufficiently far above this surface. The boundary condi-
tion there is such as to create an overall average flux den-
sity A on the surface. The pertinent mathematical sys-
tem is

V2$=0, in Q, (1

—QQ:A , asz—> o ,
oz

where 9(); is the lower boundary and z is the vertical
coordinate.

$=0, ondQ,, 2)

III. SURFACE CHARACTERIZATION

In this section, the lower boundary is described and its
fractal dimension derived. In order to generate a fractal
surface with a minimal stochastic characterization, a step
by step hierarchical generation process with a few
geometric parameters is adopted. For definiteness, we
start with a portion of an initial smooth area S. On the
plane, hemispherical 1-bumps (first generation) of certain
radius a, are placed with number density ¢, per unit area
(of the plane). The area fraction covered by 1-bumps is
pi1=c,(ma?) and the area fraction of the remaining part
of the plane is w;=(1—p;). In general p;,w; denote the
corresponding extension for ith stage of the prefractal
surface. The total areas of the 1-bumps {1} and the
remainder plane {0} are, respectively,

2p,S, oS . (3)

Next, on this first generation surface second generation
bumps (2-bumps) of radius a, are placed with the same
number density ¢, both on the remaining plane and on
the 1-bumps. There are now four distinct types of sites
on this prefractal, 2-bumps on 1-bumps {11}, 1-bumps on

the plane {01} (or “plane ” on 1-bumps), and 2-bumps on
plane {10}, and plane {00}. The total areas of these four
types of sites are, respectively,

220,018, 20,0,S , 2p,01S , ©,0,S . (4)

The process is then continued ideally ad infinitum. In or-
der to generate a fractal surface, geometric self-similarity
is enforced through two conditions. The covered area
fraction is fixed, i.e., p; =p; +; =p, which results in

2
. a:
i i+1
Ci+1 a;

C

The second condition is that the ratio of successive radii
is fixed as

172
Ai+1_ | G

b= (6)

a; Ci+1

This prescription is consistent with the assumed self-
similarity of the fractal surface and is illustrated in Fig. 1.
With these assumptions, sites like {01} and {10} in (4)
have the same surface area. Similarly, for higher genera-
tions, the sites with the same number of 1’s in their
binary representation are identified. After n iterations, a
very uneven surface with the following statistics of area
fractions for the different sites is obtained:

Total area Number

S(2p)" "C,

Binary representation
{1111...n I’s}

{O111.. .k U's, (n—k)O’s} S(2p)(1—p)"~k rC,

0000. . .n O’s S(1—p)" nC
{ P

no

where "C, =n!/[kW(n—k)!]. The nth generation has a
total area of

A=S 3"C,(2p)(1—p)" k=S(1+p)" . 7
k=0

In terms of the smallest relevant length scale a, =ayb"
(radius of the n-bumps), this can be written (for large n)
as

, (®)

FIG. 1. Sketch of a fractal surface generated by semihemis-
pherical bumps placed on an initially smooth plane. Shown is a
prefractal after two stages of the construction process.



47 GRADIENTS OF POTENTIAL FIELDS ON ROUGH . .. 959

where
D=2—log,(1+p) 9)

is the fractal dimension of the surface. The surface with
fractal dimension D is generated with two free parame-
ters b and p. It is to be noted that at any generation, the
exact locations of the bumps with reference to the previ-
ous generation configuration are not specified, except for
the assumption that they do not overlap. This is more in
conformity with the spirit of the randomness encountered
in real surfaces and is in contrast to the construction of
fully deterministic fractals (e.g., the Koch curve). Also it
is evident from (9) that for a particular D a range of frac-
tal surfaces can be obtained for different pairs of b and p.
As will be seen in Sec. V several constraints need to be
placed on b and p.

IV. PERTURBATIVE SOLUTION OF THE
LAPLACE EQUATION

The elementary building block of the proposed pro-
cedure is the solution due to a hemispherical bump on an
otherwise infinite plane. In the absence of the bump, we
find the zeroth-order solution

6 O=Az, (10)

where z is the vertical distance from the plane. On the
bump and the surrounding plane, the full solution will
satisfy

¢(1):¢(0)+¢(1):__.0 (11)
and should merge with the far-field solution,

¢V 50, z—>o0 . (12)

In order to obtain ¢'!”, a regular perturbation procedure

is followed. The general solution of Laplace’s equation
can be expressed as a linear combination of the decaying
solid spherical harmonics. We obtain the dipole solution
for the perturbation

, \v/ (0)_x z
¢<1):_a§ﬁ‘5x|_3:_a§,\‘x{3 . (13)

We make the sparse distribution assumption (p <<1) to
neglect the effect of the same generation bumps on each
other. The total flux due to the perturbation is

va¢<”'~ndA ) (14)

where U is either the bump B or the surrounding plane P
(P denotes the entire plane minus the base of the bump).
Over the hemisphere B,

n=-> , hence V¢>“”-n=2Ai (15)
x| a,
and, over the surrounding plane,
Aa3
n=k, V¢'.n=— FER (16)
b3

where k is the unit vector in the vertical direction. The
integrations over B and P reduce, respectively, to

27T—A—f”/2((110089)0%0056(19:27(1%1\ a7
a, 0
and
w 1
3 2 — 2
27ra‘Afal Srdr=—2maiA, (18)

where r and 0 are spherical polar coordinates. It should
be noted that the upper limit for the P integration is ex-
tended to » — « also for the higher generation bumps B’s
even when they are on top of larger bumps. Strictly this
approximation is justified only in the limit b—0. So the
perturbation creates an equal and opposite flux from the
bump and the surrounding plane. This indicates that the
total flux is a conserved measure.

It should be noted that the measurement of the bumps’
area in the previous section assumes b <<1. It also en-
ables us to treat the field around an i-bump sitting on a j-
bump (i > j) locally as i-bump sitting on a plane of infinite
radius of curvature (a; /a;— ).

We place 2-bumps on the next stage of the generation.
By the above discussion, the perturbation due to a 2-
bump, ¢'?”(x), is also a dipole with strength proportional
to the local flux density n(x)-V¢'!(x) at x due to the first
generation solution. But the local flux density is not a
constant as it is in the case of the starting flat surface.
From expressions (15) and (16), we get on the bump,

n(x)-V¢'V(x)=3A cos@ , cosGZai R (19)
1

and over the plane,

1
1——
s3

, s=1xl (20)

n(x)-Vo'V(x)=A
a

The effect of other bumps can be shown to be of order
p>’%. Next one needs to establish the probability that a
2-bump will be placed at a certain angle 6 or radial dis-
tance s. The starting point is the basic assumption that
bumps are placed with uniform probability over the en-
tire available surface. This has to be related to the proba-
bility density for the perturbation ¢*'(x). In order to
proceed, we divide the available area into three zones: (a
) a bump of radius a;, (b) an annular disk of width
(A—1)a; surrounding a bump, and (c) the rest of the
plane (see Fig. 2). The motivation for this artificial
division of the plane is the underlying perturbative nature
of the solution (allowed by the dilute number density of
small bumps) implying that the spatial variation in the
flux density as we go further away from a bump becomes
negligible. Since region (c) is a complicated shape, it ap-
pears difficult to express the local flux as a function of
some spatial parameter. Therefore we account for the
flux variability with s on the annular disk of arbitrary
width but prescribe a constant flux in region (c). Since
the width parameter A of the disk is arbitrary, we will ex-
amine the effect of different widths on our analysis (A=1
corresponds to no annular disk, i.e., one approximates
the flux over the entire plane as a constant). In regions
(a) and (b), we take into account the variation of the flux
with the appropriate probability density functions. For
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FIG. 2. Sketch of the three different regions used to compute
the flux at two levels of the construction process: Region (a) is
the hemispherical bump, (b) is the (shaded) disk of outer radius
Aa; surrounding every bump, and (c) is the buffer region that
fills the space between the disks of different bumps.

(c), we assume a point mass in the probability measure of
magnitude sufficient to preserve the conservative nature
of the total flux. As evident from the previous section,
area fractions on the bump, the disk, and the plane are
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probability densities are the following: In region (a)

A=A3cosd=AM%6) with PDF p(9)=—1—2_f;sin9 ,
(23)
in region (b)
A=A [1—-L |=AM®s) with PDF p(s)=-22—s
53 14+p°
(24)

and in region (c)

2
A=A 1—Ap—2p/A _ —AM®

1-1%

; _1=Mp g e

with PDF p(m)= S(m—M), (25)
1+p

where 0€[0,7/2] and s €[1,A]. The probability densi-
ties are normalized so that they yield the expressions (22)
after integrating over the appropriate ranges of the ran-
dom variables 0, s, and m.

After placing 3-bumps on the second generation sur-
face, to calculate ¢(3 . we will continue in the same way,
i.e., divide the available area in three regions locally near
a 2-bump. In the scaled variables henceforth denoted by
superscript (1) the corresponding strengths and their

20, (N2—1)p, 1—A2 21 probabilities can be obtained. We will denote the
different types of sites symbolically by a combination of
respectively. Hence the probabilities of different regions superscripts a, b, and c, i.e., 2-bumps on 1-bumps, 2-
are bumps on annular disks of 1-bumps, and 2-bumps on the
2 a2 plane region are denoted by A3, A%®, A% annular disks

2p (A~ 1)p 1=Ap (22) f 2-b n 1-bum annular disks of 1-b
T+p’ I+p ° 1+p of 2-bumps o umps, on an umps,

Using these as appropriate partial normalizations, the
flux densities or equivalently the dipole strengths for the
perturbation [see (19) and (20)] and their corresponding
J

A= AMY6'V)M0)
AP=AM6'")M"(s)

with joint PDf p(6'1,0)
p(8V,s)=p(6')p(s),

and on plane by A%?, A5®, A% and similarly for the rest
plane of 2- bumps on 1-bumps, on disks of 1-bumps, and
on plane by AS?, AS®, AS. For all these different sites the
flux densities and thelr probabilities are

=p(6')p(0),

AF=AM6'"V)M¢ p6'"",m)=p(6)p(m),
ASP=AMO(s'V)M*(6) p(sV,0)=p(sV)p(0),
Agb:AMb(s(l))Mb(s) p(sm,s)———p(s(l))p(S),
Agc:AMb(s(l))Mc P( (1) m):p(s(l))p(m)’
AP =AMM%0) p(m,0)=p(m)p(0),
ASP=AMMY(s) p(m ) =p(m)p(s),
AF=AMM*® p(m,m)=p(m)p(m).
[

This is a random multiplicative process as we proceed
towards higher generations of the surface. At every level
the different strengths of the perturbative dipole solutions
are attained by multipliers which are random variables
occurring with a prescribed probability density function.
After n iterations, the flux density at a site characterized
by n variables can be written as

g(k)

A, .80 Y m (26)

with appropriate joint probability density of the n vari-
ables. M ;)’s are the multipliers [to be drawn either from
the set M(60), M(s), or M°] at the ith stage of the flux
density calculation or the (i—+1)th stage of strength of
the perturbative dipole computation.

At this stage, we reiterate the various approximations
that have been made. (i) The bumps of same generations
do not affect each other which is justified by their being
well separated (i.e., p being small). (ii) Successive genera-
tions of bumps have vanishing ratio of their radii, b6 —0,
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which allows for the neglect of the effect of the finite ra-
dius of curvature of the bump beneath, and a bump is
treated as though it is placed on a plane. It is to be noted
that in the numerical solution for Laplace’s equation
around a deterministic Koch curve, Everstz and Mandel-
brot [18] found that “the larger-scale features of the po-
tential field, as defined by a certain level of the geometric
cascade, are virtually left untouched by the additional
geometric details added by the next step of the cascade.”
It would thus appear that the approximations used in the
present study are warranted.

V. MULTIFRACTAL STATISTICS

Let us approximate the fractal boundary with small
area elements (tiles) U;, i =1,2, ..., whose (linear) size is
one order smaller than the smallest bump (linear extent
a,.1=aph"*!). We define the y; as the total flux in such
an element

,lti=fUiV¢-ndA ~a2 A, . 27)

The findings of the previous section imply that this quan-
tity (a random variable) exhibits fluctuations whose statis-
tics depends on n. In order to cast these flux statistics in
a framework that exhibits most easily its underlying self-
similarity, we use the multifractal formalism. We focus
I

on the average of the gth-order “moment” ( 3,;uf) where
u; is the total flux in such an element of size a, ,;, and
the sum is extended over all elements. The desired quan-
tity can be obtained as

<; y?>~Aqa,%&1 <2 fI M?j)>:AqanZ?HN<ﬁ M?j)) )

i j=1 j=1

(28)
where N is the total number of elements,
n
n~Ute)S 29)

a4y +1

As is evident from the previous section, the probabili-
ties of multipliers on regions of different generations are
independent because bumps are placed with the same
density per unit area on bumps, disks, or buffer regions.
Thus the joint probabilities reduce to products of the in-
dividual probabilities. Hence we obtain

<ﬁM?j>>:<M">"~ (30)

j=1

The g moment of the random variable M can be obtained
by appropriately integrating over its possible values, as

q q
72 20 . A 1 2 (1=A%—2p/A) | 1—A%
M) = q_“P + — | L
( ) fo (3 cosB) H_psm9d6 fo 1 3 1+PSdS+ 12 11p
gl 2
_ 2 3 e+ 1—A%—2p/A | 1—A% 31
T4p | T+q @M 1—2% 14p ° 3D
where
A 1 |*
I(q,?»)=fo [lﬁﬁ sds . (32)
Writing this in terms of the usual multifractal moment exponents [19] 7(q) we obtain (in the limit of large n)
a q)
<2 u?>~Aan(2)q~2 ntl , (33)
i ap
where
39 2p / _
(g)=2(g—1)+log, [2p | ——+I(g,A) |+ |[1—A%— (1—=A%)1 77 . (34)
1+g¢ A
For g =0, we retrieve the fractal dimension of the surface 7(0)=—D. For g =1 one obtains 7(1)=0, meaning that the

sum of the flux over all area elements is a constant independent of n (conservative measure). Since the values of the

multipliers M are accurate up to O(p*/?)

which is small.

, 7(g) obtained in Eq. (34) can be shown to be accurate up to O(gp>/?/Inb),

The corresponding singularity distribution function f(a) for Holder exponents [20] « is obtained through the Legen-

dre transform
flalg))=qalg)—T1(q) ,

dr F\+F,
=l=p4 1 -2,
a(q) dq Fslog,b

where

(35)

(36)
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34 34 aI
F,=2 log,3— +=1,
TP T4 BT (14q7 | og
9 2
— 42 ~_2£ 22 1—gq 1_}\, —2, /)\, 37
F, 1—A ) ](1 A°p) " log, 1— 2% , (37)
F,=2 3—q+1(q A) |+ [ 1—23 ~2 q(lukzp)‘*q
3T T4y ’ ) :
—

We note that for the above treatment to be meaningful,
we need to restrict p so that the flux density in the rest of
the plane remain positive. The desired restriction is

.2 2p __ 1 1

1—A ) >0 orp D=2 1< A (38)
It depends on A, the width of the annular disk in the units
of the radius of the bumps. Evidently the area fraction p
becomes more and more constrained as we increase the
disk width. Furthermore, the g values are to be limited
to the range —1<g < o, because for ¢ < —1, a is not
defined [the integral I(g,A) and 39/(1+q) diverge]. This
is because of the fact that on the circle where the bumps
intersect the plane, the flux density is locally zero. This is
emphasized by the negative moments. We will return to
a more detailed discussion of this point at a later stage.
The results to be presented will thus be restricted to the
range from g > —0.5 up to ¢ =20.

The value of A is arbitrary; it is not a physical parame-
ter but only one used for the calculation. To justify this
approach, the results should be reasonably independent
of the precise A value chosen. We thus perform a A-
sensitivity test of the f(a) curve, for a dimension
D=2.15 and b=0.33 (Fig. 3). Only a negligible depen-
dence on A is observed. This means that the variability of
the flux on the plane is not important as far as the left
side of f(a) is concerned. In other words, averaging the
flux on the buffer region of the plane and having a
lumped mass in the probability distribution is quite
justified in the limit of a dilute distribution of the bumps.

Next, the dependence of f(a) on the geometric param-
eters of the problem, p and b, is explored. Evidently, it

25 T T T T T T T T T
2.0} T B
1.5+ -
/ts\ 1.0k B
N D=2.15, b=0.33
=
0.5F A=1.0 1
---- =15
0.0F —_——A=2.0 b
—0.5} -
_10 1 1 1 1 1 1 1 1 1
1.0 1.2 1.4 1.6 1.8 20 22 24 26 28 30
«

FIG. 3. f(a) for D=2.15 and b=0.33 and various A’s, eval-
uated for —0.5 <qg <20.

depends on both the parameters. Even if we fix the frac-
tal dimension D, different pairs of p,b lead to different
flux statistics. We exemplify this by fixing D =2.15. Fig-
ure 4 shows different f(a)’s all peaking at 2.15. As b is
increased (and p is decreased) the left side of the curves
become steeper and the limiting value of f(a,,;,) becomes
smaller.

We can inquire in more detail about the left limit of the
distribution, given by o, ;. This is the strongest singular-
ity which will occur if bumps of all sizes are placed pre-
cisely on top of their predecessor bump (6" =0 for all i).
This is of course very unlikely to occur [its f(a) <<0]. In
this case the multiplier at each stage takes on its largest
value, M =3, and the measure in an area element of size
a, will thus be p,,,=3"a2. By the definition of a this
corresponds to

min)

]n(y‘max)

=2+log,3 .
ln(an /ao) 2 logb3

(39)

Qpin —

This is indeed consistent with the limits in Fig. 4.

Expressions have been found that condense consider-
able statistical information about the locally integrated
flux p. This can be illustrated by recalling (Mandelbrot
[21]) that the function f(a) is related to the probability
density distribution P(u) of the measure as follows. Lo-
cally the random variable u can be expressed in terms of
the new random variable

,— _In(u)

* T nlr/ay) “0)

V. of linear

1

Then, the probability of picking a segment

f(e)

FIG. 4. f(a) for surfaces corresponding to D=2.15 but
varying b, for —0.5 < g <20.
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FIG. 5. Probability density P,(u) of the flux u, around a frac-
tal surface with D=2.15, and b=0.33, corresponding to
different scales .

extent r, where a’ takes on a value between a and a+da
is of the order of
D—f(a)

da .

P(a)da~ 41)

xr
0

It follows that the probability density distribution for u is
given by

D~ f(n(p)/In(r /ay)) 1

pln(r/ag)

ao

P.(u)=c , 42)

where c is a constant of normalization. As an example,
we consider D=2.15 and b=0.33. Figure 5 shows
P.(u/{u)) as a function of w/{u) for different values of
the scale r. It is clear that the variability of u (relative to
its mean value (u)) greatly increases for decreasing
scales r. Because of the restriction ¢ > —1 used to obtain
f(a) we cannot compute P,(u/{u)) over its entire
range, but only from its peak to the high u values.

In the next section we explore the consequences of an
additional approximation; namely, that of averaging, at
every step, the flux density over the bumps.

VI. BINOMIAL APPROXIMATION

In the previous section, we took into account the varia-
bility of the flux density on the bumps and on the sur-
J
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rounding plane by endowing the successive multipliers
with a probability density function depending on loca-
tion. It was further established that the resulting statis-
tics are not very sensitive to the variation of the disk
width, parametrized by A. In fact A=1 corresponds to
assigning an average value for the flux density on the en-
tire plane. In this section, the effect of assigning an aver-
age flux density for the bumps also is examined. There is
a further motivation for this averaging procedure. As
was noted, the zero flux density at the base circles of the
bumps restricts the order of the moments to ¢ > —1, giv-
ing rise to left-sided singularity distributions. With the
average flux density being obtained by two constant mul-
tipliers on the bumps and on the plane, the above restric-
tion can be removed. Because of its binomial nature, it
closely follows the statistics of the area characterization
and a similar symbolic representation is used.

From expressions (17) and (18), the total flux through
the bump is ASc,(ma?+2ma?)=3ASp. Noting the areas
(3), the average flux densities through the 1-bumps {1}
and the plane {0} are

3, 180, @3)
2 1—p

respectively. We observe that the restriction 3p <1 is to
be satisfied in view of the above result.

As far as the dipole strength needed for the calculation
of ¢(2)’(x) is concerned, instead of using the local value at
X, n(x)'ng(”(x), the flux density is replaced by the aver-
age flux density over the entire site type. The expression
for ¢'?" is therefore

(44)

where Aly’s are given by (43). The total contribution due
to the perturbations is found using the same analysis as
before. Then, for the second generation prefractal sur-
face, we obtain the following average flux densities for
sites {11}, {01}, {10}, and {00}

¥, 3(-3p) (1=3p) 3,  (1=3p)?
22772 (1=p) 77 (U=p) 277 (1—p)*

(45)

The above process is repeated and after n stages, statistics
for average flux densities are found that are quite similar
to the surface statistics:

Binary representation Flux density Number
{1111...n I’s} A(3)" "C,
1—3 n—k

{01101.. .k 1’s,(n —k)O’s} A(%)" '1_2 "C,
-p
1-3p |"

{0000. ..n Os} A 1 "C,

-P
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For a generic site the total flux from all sites of that
type is the average flux density multiplied by its area viz.
k n—k

1730 1 gop)k1—pyk

A
1—

2

=AS(3p)(1—3p)" k. (46)
The total flux is therefore
n
F=AS 3 "C,(3p)(1—3p)" " k=AS . (47)
k=0

Again the flux is seen to form a conservative measure
since the total flux is a constant, independent of n.
]

We now cast the above flux statistics into the binomial
multifractal formalism. In order to calculate 3 ,uf, with
the resolution of the scale of size a,, we note that there
will be 4,/ a? elements where the flux is Apa,f, where 4,
and A, are the area and average flux density of the sites
for the pth permutation. Then the summation can be
performed over all different sites corresponding to the pth
permutations of the n-digit binary numbers according to

AP 2
pi= 2 —5 (Apay)?.
> 3 5 (Aya) (48)
i p n

Substitution of different expressions, and a binomial sum-
mation reduces (48) to

3 uf=ad T2AIS (b¥Y(3p)42p) I+ (1= 3p)(1—p) "9}" (49)

which can be written as

q)
S ui=A9Sa31 72 | — , (50)
i 0
where
7(g)=2(g—1)+1log,[(3p)%2p)! "9+ (1—3p)(1—p)' 9] . (51)
For g =0, we again retrieve the fractal dimension of the surface 7(0)= — D, while 7(1)=0, as required by the conserva-
tive nature of the process. The singularity distribution and the expression for a are
flalg))=qalq)—1(q), (52)
(30)%(2p)" ~“log, |22 ‘+(1—3p)q(1—p)1_qlogb 11;33]
dr -
alg)=——=2+ 53
" aq (3p)42p) "I+ (1—3p)U1—p)' 4 53

To explore the dependence of f(a) on the parameters,
we take different pairs of p and b for D =2.15, and Fig. 6
shows the corresponding f(a)’s. As before, while b is in-
creased (and p is decreased) the left side of the curve be-
comes steeper and the limiting value of f(a,,,) becomes
smaller. We see that the right side of f(a) curves
achieves its limiting value quite soon.

2.5 T T T T
2.0 B
G
& 1.5r E
1.0F B
O.? L 1 | L 1
.50 1.75 2.00 2.25 2.50 2.75 3.00

FIG. 6. f(a) for surfaces corresponding to D=2.15 but
varying b for the binomial approximation.

[
We obtain the values of the limits of the distribution

by taking the limits of Eq. (53) for large g using
3(1—=p)/2(1—3p)>1,

Apmin = lim a(g)=2+log,(3) (54)
q~>eo
25 T T T T T T T T
2.0+ E
1.5+ .
= 1.0F ) i
N /- D=2.15
< 7/
0.5f / 4
) / b=0.33, p=0.18
/-/ binomial approx
0.0 ——— random mult B
/
- ! |
o.sw,
)
‘10 1 1 1 L — L - L 1
1.0 12 14 16 18 2 22 24 26 28 30

.0
[0

FIG. 7. Comparison of f(a) for binomial approximation and
random multiplier approach (D =2.15, b=0.33).
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and
A = quPwa(q)ZZ—l-logb 11;_3,)3 l . (55)

Finally, this is now compared with the results of the
random multiplier approach of the previous section. For
both, f(a) is calculated using b =0.33 and p=0.18 (i.e.,
D =2.15), and is shown in Fig. 7. We see that the two
approaches yield significantly different results. Only in
the neighborhood of the peak do they agree to some ex-
tent. Comparing Egs. (39) and (54) shows that the
minimum «a values differ by log,2, which is significant.
This shows that averaging the flux over the bump at
every step does not yield the correct f(a) spectrum.

VII. SUMMARY AND DISCUSSION

A perturbative approach has been used to obtain ana-
lytic expressions for the statistical properties of the gra-
dient of potential fields on a fractal surface. This surface
is composed of semihemispherical bumps of increasingly
smaller sizes placed randomly over an initially smooth
plane. The approximations used to solve the problem are
valid at small “roughness,” characterized by a surface di-
mension D =2+4¢, with small €. The limitations of the
present study, namely, the sparse distribution assumption
as well as the large scale ratio between consecutive stages,
were necessary in order to treat the problem analytically.
Using a random multiplier approach, the left side of f(a)
was determined. The resulting expressions for f(a) were
shown to depend not only on D but also on other parame-
ters characterizing the surface geometry. In general
then, we point out that characterizing a rough surface us-
ing its fractal dimension only is insufficient to treat the
harmonic problem. We illustrated the implications of
these findings on the flux statistics by explicitly showing
probability distribution functions for different resolu-
tions, or cutoffs. However, a stronger binomial approxi-
mation of the multiplicative process was shown to yield
results that differ considerably from those of the complete
statistical treatment of flux multipliers. This illustrates
possible dangers of averaging multiplier statistics before
their product is taken.

In terms of the relevance of these findings on the actual
potential field ¢(x) surrounding the fractal boundary, we
now make some qualitative observations: If we inquire
about the value of the potential field ¢ at a distance r
from the boundary, we argue that it is of the order of the
average normal gradient over a region of area r2, multi-
plied by the distance ». We can distinguish between three

regimes as follows.

If r >>a,, then ¢ ~rA because the convolutions of the
boundary are not felt at this distance. If we look at
points very close to the boundary at distances smaller
than a, (the size of the smallest bumps on the surface),
i.e., r <<a,, then ¢ becomes a random variable. It is re-
lated to the measure u by ¢ ~r(u/a?), where p is the flux
occurring in segments of the boundary of size a, and
whose statistical distribution is given by Pan(,u). If we

consider points at an intermediate distance from the
boundary a, <r<a,, then ¢~r(u/r?, where u is the
coarse-grained flux at resolution r. Its statistics are thus
given by P,(u).

Far from the boundary the multifractal nature of the
gradient is more or less irrelevant for the field statistics.
Close to the boundary (a, <r <a,) the mean flux, and the
mean field, are again relatively unaffected by the fractal
boundary because of the requirement of conservation
(yielding a scale-independent mean). However, using the
above plausibility arguments relating the field at some
distance r to the coarse-grained flux on the boundary, the
field will locally go like ¢ ~r'*~ 1 [with probability densi-
ty P,(a)]. The fastest decay away from the boundary will
be observed when a=a,,;, (at the “tips” of the bound-
ary).

In terms of statistics, higher-order moments of the field
can be strongly dependent on cutoff, resolution, and dis-
tance to the boundary. For instance, &, the skewness of
the field, will go like

(¢*)  (u/r)*)
<¢2)3/2 ((u/r)2)3/2

For example, in the numerical example considered in Sec.
V with D =2.15 and b =0.33, this yields &~r 3% i.e.,
it diverges as r —0.

Therefore, an approximate statistical characterization
of the entire potential field parametrized by its distance
to the boundary is possible.

Ky ~r1'(3)—(3/2)7(2)—(1/2)D . (56)
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