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Figure 5(a, b). For caption see facing page.

p ∼ O(1). The Dst ∼ De curve is non-monotonic with an initial decrease (the initial
decrease being larger for larger Ca) followed by an increase as is also seen from
the transient deformation curves (figure 3d). The non-monotonicity of the Dst ∼ De
curve was also observed in the two-dimensional study by Yue et al. (2005b). On
the other hand, such non-monotonicity was not observed in experiments; neither is
it predicted by analytical theories (Greco 2002; Maffettone & Greco 2004; Minale
2004). However, it should be noted that the experiments were performed for small
elasticity parameter p =De/Ca which restricts their De ∼ 0.6. To understand better
the reason for non-monotonicity, we carefully examine the individual axes lengths for
two different values of Ca in figures 5(c) and 5(d). The initial decrease in the Dst is
primarily due to the increase in the B axis length. This increase is arguably due to
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Figure 5. (a) Steady-state drop inclination angle ϕst varying with De for different Ca. (b)
Steady-state drop deformation Dst (normalized against the value for De= 0) varying with De.
Steady-state drop axes length L,B,W and deformation parameter D (normalized with De= 0
values) for (c) Ca = 0.2 and (d) Ca = 0.3.

the decrease in the orientation angle. A drop aligned away from the extensional axis,
experiences lesser shearing force, and as a result, the drop deformation decreases.
A similar decrease in overall deformation and L is expected because of the drop
alignment.

In zero-vorticity linear flows such as the uniaxial and planar extensional flows,
viscoelasticity of the matrix fluid is observed to increase the drop deformation
monotonically (Mighri et al. 1997; Ramaswamy & Leal 1999a; Hooper et al. 2001).
Tretheway & Leal (2001) concluded that the stagnation points at the tips of the drop
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cause the extension of polymer chains, resulting in the formation of pointed ends,
increased deformation and a decrease in the critical capillary number required to burst
the drop. In a sheared system, the flow near the drop tips is locally extensional and we
expect a similar extension of the polymer chains at that location. This would tend to
increase drop deformation competing with the decreasing effects due to drop inclin-
ation away form the extension axis. Moreover, this should be a localized effect that
primarily increases deformation at the tips and hence results only in an increase in the
L axis length. Indeed, the L axis length increases monotonically for Ca =0.2 (figure 5c)
and shows only a slight decrease followed by an increase for Ca =0.3 (figure 5d).

Following Yue et al. (2005b) and Aggarwal & Sarkar (2007a), we plot viscous and
viscoelastic stresses along the circumference of the drop (in the central plane of the
drop i.e. z = Lz/2) as a function of the angular position φ measured anticlockwise
from the positive x-direction, for different De at Ca =0.3. In figures 6(a) and 6(b)
we plot the viscous and viscoelastic stress normal to the interface i.e. Tnn = n · T · n,
where n is the normal vector to the drop interface. With increasing elasticity, the
magnitude of the tensile viscous stress T v

nn decreases in magnitude; the stress peaks
shift consistently towards lower angular positions. This is due to the orientation
of the drop away from the imposed flow’s extensional direction. Also, the weakly
compressive stress at the drop equator decreases in magnitude slightly. Both these
observations indicate a decrease in the deforming viscous forces. The magnitude of the
viscoelastic normal stress T p

nn increases quite significantly, from being approximately
equal to T v

nn at small De = 0.1. This increase is local and primarily at the drop tips.
A look at the primary orientation of the polymer molecules (primary eigen-direction
of the conformation tensor A= (λ/µp)Tp + I in the matrix for a representative case
Ca = 0.3 and De = 1, in figure 7(a), indicates that the polymer molecules are indeed
normal to the drop interface near the tips; stretching of the polymer molecules is a
maximum here. This observation is in conformity with the observations of Pilapakkam
& Singh (2001) but at variance with that of Yue et al. (2005b). Yue et al. observed
the maximum stretching of the polymer molecules at the drop equator. We believe
that a local extensional flow near the drop tips gives rise to large velocity gradients,
thus locally increasing the stretching of the polymer molecules significantly.

Ramaswamy & Leal (1999a, b) pointed out that viscoelasticity could affect drop
deformation through a change in both the balance of stresses normal to the drop
interface and by inducing a change in the flow. In uniaxial extensional flows, the
viscoelastic stresses at the interface cause a reduction in drop deformation and the
curvature at the drop tips. However, a change in the flow, induced by the viscoelastic
stresses resulted in an increased drop deformation. The final drop shape was a
balance of the two opposing effects. In a shear flow, drop viscoelasticity has been
found to cause little flow modification (Yue et al. 2005b; Aggarwal & Sarkar 2007a).
Flow modification due to viscoelasticity can happen only through viscoelastic stress
gradients. In figure 7(b) we look at the vector plot of the force due to the viscoelastic
stresses, ∇ · Tp in the matrix. It is evident that even at a small De =0.1 (where we see
a decreased deformation from the Newtonian value), the viscoelastic force tends to
increase L and decrease B , i.e. increase the deformation. A similar plot for the viscous
force ∇ · (µs∇u) (not shown here for brevity), as expected, reveals also its tendency
to enhance deformation. Steady state represents a balance between the viscous and
viscoelastic forces trying to stretch the drop and the surface tension force trying to
resist it. The reduction in viscous stretching owing to increased alignment at low De
plays a crucial role in decreasing deformation from its Newtonian value. Note also
that the magnitude of the viscoelastic force at the drop tips is significantly higher
than that at the equator. This explains why B decreases almost monotonically because
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of the alignment of the drop with the flow direction (decreased viscous stress), and
L changes non-monotonically (decreasing viscous stress but increasing viscoelastic
stress) with De for Ca = 0.3.

8. Large deformation and breakup
Finally, we look briefly at the effect of matrix viscoelasticity for large deformations

(at Ca = 0.4). In figure 8, we plot the transient deformation measure L/a; the
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Figure 7. (a) Dominant orientation of polymer molecules for Ca = 0.3 and De =1 in the
central flow plane (b) Viscoelastic force field ∇ · Tp for Ca =0.2 and De= 0.1.
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Figure 8. Transient drop deformation L/a predictions for parameter set close to the critical
case, Ca = 0.4 and varying De.

inset shows the transient drop inclination angle. For Ca =0.4 and De =0, the fully
Newtonian system is supercritical and results in an unbounded drop. For De =0.25,
the drop elongation process is slowed down as the drop quickly becomes aligned with
the flow, but the drop eventually breaks. For still higher De (0.5 and 1.0), we see
bounded drop deformations. Even though for De = 1.0 drop deformation is more than
that at De =0.5, there still exists a steady shape. Matrix phase viscoelasticity is seen
to stabilize elongated drops in this small range of De. However, on further increasing
De(= 2) we see an unbounded drop deformation because the viscoelastic stresses are
very strong and breakup the drop. In this way, the breakup behaviour mimics that of
bounded deformation, in that smaller viscoelasticity inhibits drop breakup, but higher
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viscoelasticity enhances. The complete breakup process is slow and therefore involves
lengthy computations beyond our current computational capabilities.

9. Effects of β variation
All the results presented so far are for a fixed value of β = 0.5. Variations with β

amount to an increase in the contribution of the polymeric viscosity in the viscoelastic
phase. Enhanced viscoelastic effects are thus expected for high β values. We plot in
figures 9(a) and 9(b) the steady-state drop response varying with De, for Ca =0.3
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and different β values. The non-monotonic change in steady-state drop deformation
(figure 9a) is seen for all β values. The change in trend for smaller β values is seen at
higher De. On scaling the independent variable with β (shown in the inset) the initial
descending parts of the curves collapse, indicating a βDe scaling. We attribute the
decrease in deformation to alignment of the drop away from the principal extensional
direction. In figure 9(b), we plot the steady-state inclination angle of the drop vs. De
for varying β . An increase in viscoelastic effects owing to increase in β causes the
angle to decrease more sharply with De. This decrease is linear in De. On scaling
the x-axis with β (plotted in the inset) the change in angle is clearly seen to vary as
βDe. The variation with βDe indicates the effect of the first normal stress difference
in a steady shear N1 = 2µpγ̇ 2λ, which when non-dimensionalized by µmγ̇ becomes
N1 = 2βDe.

10. Elastic drop in an elastic matrix
The effect of drop viscoelasticity in shear flows has been studied and detailed

in several previous investigations (Pillapakkam & Singh 2001; Yue et al. 2005b;
Aggarwal & Sarkar 2007a). Elasticity of the drop phase results in an inhibition of
the deformation (an attendant increasing alignment with the extensional axis is also
observed). This effect is limited and saturates at high De. Here, we briefly consider
both phases being viscoelastic. Mighri et al. (1998) experimentally observed drop
deformation where drop and the matrix fluids were Boger fluids with four different
relaxation times. They observed that increased drop viscoelasticity decreased drop
deformation whereas increased matrix viscoelasticity enhanced it. As a result, they
observed that increasing the elasticity parameter k = λd/λm =Ded/Dem decreased drop
deformation. Specifically, they compared the deformation of a fully elastic system with
that of a fully Newtonian (N/N) system. We would further expect that for smaller
k, matrix elasticity would dominate and the drop deformation would be larger than
that in the fully Newtonian (N/N) system, while for larger k, the drop viscoelasticity
would dominate to decrease the deformation from the N/N system. Mighri et al.
commented that for k < 0.37, steady-state deformation was always greater than that
for the corresponding N/N system and for k � 0.37 the steady-state deformation
was always less than that for the N/N system. However, the experimental system
used by Mighri et al. (1998) is such that both λd and λm are varied to arrive at
different values of k rather than fixing the drop/matrix phase elasticity (De) while
varying the elasticity ratio, which admittedly is difficult to achieve in an experiment.
Note that the critical k value, in general, should depend on the Deborah number.
In any event, following Mighri et al. (1998), we plot in figure 10 the steady-state
deformation as a function of k for Ca = 0.2 for four different matrix Deborah numbers
(Dem = 0.1, 0.5, 1.0, 2.0). The inset shows a plot of the steady-state inclination angle
for the same cases. For each of the different curves, we have fixed the bulk phase
elasticity and varied the drop phase elasticity. We observe, as expected, a monotonic
decrease in Dst (and an attendant monotonic increase in ϕst ) with k. However, note
that in figure 5(b), we observe a non-monotonic response for the N/O case, in that for
small Dem, the matrix viscoelasticity tends to decrease the deformation (as does the
drop viscoelasticity). Therefore, unlike Mighri et al.’s results, we observe that Dst in
the fully elastic case is lower than that of the fully Newtonian system (Dst = 0.233) for
all values of k, at smaller values of Dem. However, for higher values, e.g. Dem = 2.0,
we observe that Dst in the elastic system is higher than 0.233 (N/N value) for
small k.
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Dem values at Ca = 0.2. Inset shows the change in ϕst .

11. Summary
Following the numerical investigation of an Oldroyd-B drop deforming in a

Newtonian matrix, we have presented results for the inverse problem of a Newtonian
drop in an Oldroyd-B matrix. We have compared experimental observations of drop
response to variation in matrix viscoelasticity. The drop inclination angle decreases
because of the normal stresses in the matrix, which thereby rotates the drop away from
the stretching axis. This along with a localized stretching of the polymer molecules
at the drop tips causes a non-monotonic change in steady-state deformation with
De. The change in orientation angle of a Newtonian drop owing to matrix phase
viscoelasticity is opposite to and much more pronounced than what was observed for
a viscoelastic drop in a Newtonian matrix. The viscous and viscoelastic forces are
investigated in detail and shown to be in a subtle balance giving rise to the complex
drop response. The angle was also shown to play a critical role in the observed
non-monotonic behaviour. For breakup, at supercritical capillary numbers we see a
range of De in which the matrix viscoelasticity is seen to stabilize Newtonian drops
against breakup. However, above that range, matrix viscoelasticity seems to promote
breakup. For fully elastic systems, we observe that the drop deformation decreases
with increasing elasticity ratio, while the drop alignment decreases.

The work is partially supported by NSF grant CBET-0625599. We also thank
Professor Stefano Guido for providing his experimental data.

Appendix A
Consider the single-phase steady shear flow of an Oldroyd-B fluid with polymeric

viscosity µp . At t = 0, a fully developed shear flow u(x, 0) = γ̇ y ĵ and extra stress



82 N. Aggarwal and K. Sarkar

Tp(x, 0) = 0 is assumed. The Oldroyd-B equations are

λ

[
∂Txx

∂t
− 2

(
Txx

∂u

∂x
+ Txy

∂u

∂y
+ Txx

∂u

∂z

)]
+ Txx = 0, (A 1)

λ
∂Txy

∂t
+ Txy = µpγ̇ + λγ̇ Tyy, (A 2)

λ
∂Tyy

∂t
+ Tyy = 0. (A 3)

The solutions are Tyy = 0, Txy (t) = µpγ̇ [1 − exp(−t/λ)]. The (x, y)-component of the
extra stress contributes to an extra stress along the streamlines, although there is no
straining motion in the (x, x)-direction. Thus, (A 1) reduces to

λ
∂Txx

∂t
+ Txx = 2µpγ̇ (λγ̇ )[1 − exp(−t/λ)], (A 4)

Txx(t) = 2µpγ̇ 2λ[1 − exp(−t/λ){1 + t/λ}].
The extra stress is given as
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