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Deformation and breakup of a viscous drop in a potential vortex are numerically
simulated. Capillary number, Reynolds number, and viscosity and density ratios are
varied to investigate their effects on the drop dynamics. The vortex locally gives rise
to an extensional flow near the drop with the axis of extension rotating at a constant
rate, as the drop revolves around the vortex centre. The rotation of the axis plays a
critical role in the competing dynamics between the flow-induced stretching and the
interfacial tension. The relation between the rotating extensional flow and a shear
flow is explored. For low capillary numbers, a periodic state is reached, where the
drop deforms into an ellipsoidal shape and undergoes steady rotation with a distinct
phase lag behind the imposed flow. For density-and-viscosity-matched drops, increased
interfacial tension results in decreased deformation and reduced phase lag. Increased
inertia promotes deformation. In the presence of inertia, decreasing capillary number
leads to a negative phase lag. The rotation of the extension axis inhibits deformation at
low values of the Reynolds number. But at high Reynolds numbers, rotation-induced
centrifugal forces promote deformation. At low and high viscosity ratios, an increase
in viscosity ratio leads to enhancement and reduction in deformation, respectively.
At density ratios larger than unity, the drop deformation displays resonance in
that it varies non-monotonically with a distinct peak with variation of interfacial
tension and density ratio. The peak corresponds to the natural frequency of the
drop deformation matching with the frequency of rotation due to the vortex. A
simple physical model is used to explain various observations including asymptotic
scalings. We also explore different mechanisms for drop breakup at different Reynolds
number, and provide critical capillary numbers as functions of other parameters.
In particular, vortex-induced resonance offers an alternative mechanism for size-
selective drop breakup. Details of flow fields and transients are also presented and
discussed.

1. Introduction
Drop deformation, owing to its critical importance in numerous industrial

emulsions, has been extensively investigated by the fluid mechanics community.
Experiments have been performed to observe isolated drops deforming in linear
flows (Taylor 1932; Grace 1982; Bentley & Leal 1986). Analytical theories have been
developed (Taylor 1932, 1934; Cox 1969; Frankel & Acrivos 1970; Hinch & Acrivos
1980; Rallison 1984), and detail computations performed (Youngren & Acrivos 1976;
Kennedy, Pozrikidis & Skalak 1994; Loewenberg & Hinch 1996).

Much of the research on drop deformation and breakup has focused on inertialess
steady Stokes flow (see reviews by Rallison (1984) and Stone (1994)). The drop
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shape in such a flow is governed by the balance of viscous and interfacial tension
forces, and is characterized by the capillary number and the viscosity ratio. Beyond
a critical capillary number, a drop cannot achieve an equilibrium shape and breaks
up into smaller droplets by dynamic processes such as end-pinching or capillary
instability (Tsakalos, Navard & Peuvrel-Disdier 1998). In a steady linear flow,
the drop behaviour near critical stationary states (Navot 1999; Blawzdziewicz,
Cristini & Loewenberg 2002) is dominated by a stable slow mode that diverges
at the critical point. Stability of the drop shape depends on the flow type and
its time dependence (Bentley & Leal 1986). For instance, a highly viscous drop
reaches a bounded shape in a simple shear due to viscous rotation inside even for
arbitrarily high capillary numbers. But for extensional flows, there is always a critical
capillary number for breakup even for arbitrarily large viscosity ratios (Taylor 1932;
Blawzdziewicz, Cristini & Loewenberg 2003). On the other hand, transient flows
such as step-shear can rupture a drop in subcritical conditions (Stone, Bentley &
Leal 1986). The nonlinearity of the moving boundary problem leads to such a
critical dependence on flow history. Results based on steady flow analysis therefore
are not sufficient for the description of the dynamic behaviour and breakup of
drops.

Inertia has also been shown to play an important role in promoting drop deforma-
tion in simple shear (Brady & Acrivos 1982; Seth & Pozrikidis 1995; Li, Renardy &
Renardy 2000) and extensional flows (Kang & Leal 1987, 1989; Ramaswamy &
Leal 1997). The dynamic pressure balances the interfacial forces at high inertia.
Inertial drop breakup and effects of insoluble surfactants have been simulated using a
volume-of-fluid (VOF) formulation (Renardy & Cristini 2001a, b; Renardy, Cristini &
Li 2002; Khismatullin, Renardy & Cristini 2003). At high inertia, the Weber number
(We= Re Ca) determines the dynamics, and the critical condition for breakup reaches
an inviscid limit signifying a balance between the inertia and surface tension. Sarkar &
Schowalter (2001a) investigated two-dimensional drop deformation in various time-
periodic extensional flows at finite inertia and found a resonance phenomenon in the
drop dynamics. The drop has a natural frequency determined by the interfacial tension
and the inertia. When the frequency of the forcing flow matches the natural frequency,
the drop experiences an increase in deformation. Sarkar & Schowalter (2000) also
performed a two-dimensional computation of an upper-convective-Maxwell drop
deforming in similar flows to find that the drop deformation varies in a complex way
with the Weissenberg number due to elasticity and the presence of shear waves at
finite inertia.

In this paper, we examine drop deformation and breakup in a vortex using a front-
tracking finite-difference simulation (Tryggvason et al. 1998; Sarkar & Schowalter
2001a). A vortex offers an example of time-periodic flow, an important departure from
steady shear and extension, and can be realized in an experiment (Hopfinger, Browand
& Gagne 1982; Maxworthy, Hopfinger & Redekopp 1985). It can serve as a base flow
to study the rheological response of a fluid in a non-viscometric flow. Away from the
vortex centre, locally it imposes an extensional flow, with the axes of extension rotating
at a fixed frequency. The effect of rotating axes on the deformation is similar to that
in a steady shear which combines equal extensional and rotational contributions.
Hakimi & Scholwater (1980) rightly noted that drop shapes are differently affected
by the symmetric and the antisymmetric parts of the velocity gradient. We show in
§ 2.1 that in a rotating frame, the rotating extensional flow transforms into a steady
shear. However, the effects of the two flows on a finite size drop are different. The
elucidation of deformation and burst mechanisms in a vortex is also important for
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understanding emulsification in turbulent flows, which involve vortex structures at
all length scales. Li & Sarkar (2005a−d) considered inertial effects on the rheology
of a dilute emulsion of viscous drops in steady shear and oscillating extensional
flows. Sarkar & Schowalter (2001a, b) briefly considered finite-inertia deformation
of two-dimensional drops in a vortex along with other time-periodic extensional
flows. However, they concentrated only on the resonance phenomenon for the whole
class of flows. Owing to the two-dimensional nature of the computation, detailed
flow structure and drop shapes were not studied. Deformation was investigated
only with the Taylor criterion for elucidating the qualitative dynamics. The study
was further restricted to viscosity-and-density-matched cases, which for a vortex
does not allow resonance. In this paper, we provide a detailed description of the
three-dimensional dynamics and flow fields inside and outside the drop in the
vortex, investigate the phase relation between the drop response and the imposed
flow, and extend the flow to non-unity density and viscosity ratios. Furthermore,
we provide a quantitative description of the dynamics of drop breakup in a
vortex.

In the following, mathematical formulation and its numerical implementation are
briefly sketched. A careful convergence study is executed before the results are
presented with systematic variation of parameters. A simple ordinary differential
equation (ODE) model is used to explain the underlying physics.

2. Problem formulation
2.1. Kinematics of linearized vortex flow

The vortex is an irrotational flow, with each fluid element being stretched and
revolving around the centre but experiencing no rotation (figure 1a). The principal
axis of stretching rotates about the centre of the element (dashed box in figure 1a).
For a small isolated drop away from the vortex centre, one can linearize the velocity
field induced by the vortex at the drop centre. We assume that an initially spherical
drop with radius R is placed at a large distance R∗ from the vortex origin, R∗ � R.
The imposed linear flow field is

uv
0(x) = E[xc(t)] · x = E[R∗ cos θ(t), R∗ sin θ(t)] · x

= ε̇0

(
sin 2θ −cos 2θ

−cos 2θ −sin 2θ

)
·
(

x

y

)
, (2.1)

where E[xc(t)] is the velocity gradient tensor evaluated at the drop centre xc(t) =
{R∗ cos θ(t), R∗ sin θ(t)}. The magnitude of stretching is ε̇0 = Υ/(2πR∗2), Υ being the
circulation of the vortex. The centre of the drop xc revolves around the vortex with the
circular velocity Vθ = Υ/(2πR∗), and the position is denoted by θ(t) = 2πt/T = ωt/2,
where T is the period of circulation. The angular frequency ω is related to the strain
rate ε̇0 by ω = 4π/T = 2Vr/R

∗ = Υ/(πR∗2) = 2ε̇0. Note that the frequency of local
stretching is twice the frequency of the vortex due to the symmetry of opposite points
across the vortex. Note also that although the flow is defined in the (x, y)-plane,
the presence of the drop introduces a velocity component in the third dimension
orthogonal to the plane. The flow perturbation leads to vorticity generation in the
irrotational imposed flow.

Note that on going to a rotating frame,

x ′ = Q(t)x, with Q(t) =

(
cos αt sinαt

−sinαt −cos αt

)
,
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Figure 1. (a) Stretching of a drop with a rotating axis of stretching in vortex. The
dashed circle represents the rotating path of a drop in a vortex. The arrows denote the
stretching of the drop at different locations in the rotating path. (b) Schematic of domain of
calculation.

the velocity gradient tensor changes as

E′ = Q̇QT +QEQT .

In a frame rotating with the same frequency as that due to the vortex or half the
frequency of axes rotation, i.e. α = ω/2 = ε̇0, we obtain a steady shear flow with a
shear rate of 2ε̇0 (Taylor 1934). However, a finite size drop would undergo different
deformations in these two flow fields. For small deformation of a drop in a steady
linear flow field, different approximations have been made to account for the effects
of vorticity and rotation (Hakimi & Schowalter 1980), especially for deformation of
high-viscosity-ratio drops. Rallison (1980, 1981, 1984) provided a unified version of
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the small deformation theory. In § 4 containing results, we compare drop deformation
in a vortex with that in a shear.

2.2. Governing equations

The system is governed by the Navier–Stokes equation

∂(ρu)

∂t
+ ∇ · (ρuu) = − ∇p −

∫
∂B

dxBκnΓ δ(x − xB) + ∇ · [µ{∇u + (∇u)T }], (2.2)

in the entire domain Ω , consisting of the continuous phase Ωc and the suspended
drops Ωd (figure 1b). p is the pressure, ρ the density and µ the viscosity of the fluid.
The superscript T represents transpose. ∂B is the drop–fluid interface consisting of
points xB , Γ is the constant interfacial tension, κ is the local curvature, n is the
outward normal to the interface, and δ(x − xn) is the three-dimensional Dirac delta
function. The stress due to interfacial tension is formally represented as a singular
body force acting at the interface (Tryggvason et al. 1998), anticipating its numerical
implementation using Front-tracking. It produces the jump in the normal stress
across the drop interface. We do not consider Marangoni effects of interfacial tension
variation due to non-uniform temperature or surfactant concentration. The evolution
of interface xB ∈ ∂B is coupled with the fluid velocity u by

dxB

dt
= u(xB) =

∫
Ω

dxδ(x − xB)u(x). (2.3)

The velocity field is incompressible:

∇ · u = 0. (2.4)

Material properties such as density or viscosity are assumed to be uniform within Ωc

and Ωd and experience a jump across the interface ∂B . Such properties follow the
motion of fluid, satisfying

Dφ

Dt
=

∂φ

∂t
+ u · ∇φ = 0 (2.5)

where φ(x) represents density ρ(x) or viscosity µ(x). Although density difference is
allowed in the current investigation, the buoyancy effects are not considered. Lastly,
the velocity boundary condition is specified by equation (2.1), assuming the domain
size is much larger than the size of the drop.

2.3. Non-dimensional parameters

Using initial drop radius R and inverse extensional rate ε̇−1
0 as the length and time

scales, respectively, we arrive at a number of non-dimensional parameters: Reynolds
number Re = ρε̇0R

2/µ, inverse capillary number (non-dimensional interfacial tension)
k = Ca−1 =Γ/(µε̇0R), viscosity ratio λ=µ′/µ and density ratio λp = ρ ′/ρ. The prime
denotes drop properties. For a vortex, the axis of stretching rotates at a fixed frequency,
which corresponds to a fixed Strouhal number St =ω/ε̇0 = 2 (Sarkar & Schowalter
2001a, b).

3. Numerical implementation
The governing equations (2.2)–(2.5) are solved in a computational domain using a

front-tracking finite difference method. The method is described in detail by Sarkar &
Schowalter (2001a) and by Li & Sarkar (2005a–d). Here we provide only a brief
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description. The method treats the multiple phases with different properties, separated
by a sharp interface, as a single phase with the same set of equations in the entire
domain. It therefore eliminates the need for satisfying velocity and stress continuity
conditions at the moving interface. However, governing equation (2.2) is left with
discontinuous viscosity and density, as well as singular forces due to interfacial
tension. For computational purposes the discontinuity and the singular forces are
replaced by ‘smoothed’ surrogates. They effectively replace the sharp interface by
a diffuse one having the thickness of few (in this paper four) grid spacings. The
resultant smoothed equations are solved in a regular Cartesian grid using an operator
splitting/projection finite-difference method to obtain the velocity field. Unlike other
similar methods such as VOF, level set or phase field, in this method the interface
(front) is separately discretized by a mesh of triangular elements and tracked. The
front evolves with the velocity interpolated at front points from the Cartesian grid
using a smoothed version of equation (2.3). The new front position is used to
determine the smoothed property fields and surface forces. In our simulation, to
prevent the elements from being excessively distorted, an adaptive regridding scheme
is implemented for the front. The topological changes of the front such as rupturing
or merging can be handled by appropriately modifying the front mesh. Although two
fronts close to each other such as happens during neck formation and breakup (less
than four grid spacings) lead to error due to numerical smoothing near the interface,
the qualitative features of topological change should still be captured in a spirit,
similar to methods such as level set or volume of fluid (Renardy & Cristini 2001a).
We also note that the breakup details might be critically affected by small-scale forces
other than hydrodynamics, not considered in this simulation. In this paper, we do
not investigate the detailed fragmentation after breakup.

4. Results
An initially spherical drop is placed at the centre of a cubic computational domain

of size Ld = 10R. A fully developed linear flow (equation (2.1)) is assumed initially,
and imposed at the boundary. Figure 2(a–f ) shows the typical shape of a deforming
drop in the linearized vortex at different time instants t ′ = t ε̇0. The drop deforms
from its initial spherical shape into an approximately ellipsoidal shape, and the axis
of maximum elongation (dashed line) rotates counterclockwise following the axis of
flow extension (solid line). The flow is strongly perturbed near the two ends of the
drop. The velocity field inside the drop does not follow rigid-body rotation although
from the shape of the drop it appears to. There exists a phase difference between
the drop axis and the extension axis. For small capillary numbers, interfacial tension
balances stretching due to the flow, giving rise to a dynamic steady state with a
periodically rotating drop shape. For large capillary numbers, the capillary forces
might not be sufficient, and the drop may experience breakup. Careful comparison
of figures 2(b) and 2(f ) shows that the drop is elongated after one flow period. The
elongation eventually leads to breakup. The transient three-dimensional shape of the
same drop approaching breakup is illustrated in figure 2(g–i). At the instant just
before breakup (t ′ = 4π), the drop is highly elongated, with a narrow waist connecting
two larger ends. It will eventually rupture at the waist. Note that at t ′ =4π the drop
ends are approaching the simulation boundary; boundary effects are examined below
(see § 4.1). In the present study, the detailed process of fragmentation beyond this
limit is not investigated.



Drop deformation in a vortex at finite inertia 7

0.3
0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.3
0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.3
0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.3
0.3 0.4

y

z

0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.3
0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.3
0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

y

x

(g) t′ = 2π

(a) t′ = 7π/4(imposed flow) (b) t′ = 7π/4 (c) t′ = 2π

(d) t′ = 9π/4 (e) t′ = 5π/2 ( f ) t′ = 11π/4

(h)  t′ = 3π (i) t′ = 4π
y

z

y

z

Figure 2. (a–f ) Imposed flow and time-dependent drop behaviour in the (x, y)-plane through
the centre of the drop; (g–i) The shape of a drop during breakup. Re = 1.0, k = 10,
λ= λρ = 1.0.

4.1. Convergence study

We performed a convergence study to investigate the ability of the present code to
describe, in particular, the dynamic process of breakup. In figure 3(a), the time evolu-
tion of the deformation parameter D is plotted for the case of Re =1, λ=λρ =1, k =50,
and a density-and-viscosity-matched drop. D is defined by Taylor (1932, 1934) as
(L − l)/(L + l), where L and l are the maximum and minimum surface-to-centre
distances, respectively. Following an initial transient overshoot, D reaches a steady
value with slight numerical oscillations. As the discretizition is increased from 65 ×
65 × 65 to 161 × 161 × 161, the steady deformation Ds converges to a value around
0.055. The numerical oscillations also reduce on refining grid levels. We choose
113 × 113 × 113 for our simulation. Although a slight deviation of D from the
converged value exists at this level, the actual drop shape matches well with that at
161 × 161 × 161, as displayed in the inset. The quadratic rate of convergence of Ds is
also shown in the inset.
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Figure 3. Convergence of deformation D with varying discretizations for (a) Re = 1.0, k = 50,
λ= λρ = 1 (bounded deformation), (b) Re = 10.0, λ= λρ = 1, k =10 (breakup) and k = 40; and
with varying domain size in (d) for λ= λρ = 1. Near critical breakup condition, D shows
divergence as in plot (b) for Re = 10.0, λ= λρ = 1, k = 40. In (c) the convergence of D slightly
away from the critical condition is shown.

In figure 3(b), the deformation D at Re = 10, λ= λp = 1, k = 10, k = 40 is plotted for
various discretizations. For k = 10, the drop experiences unbounded growth indicating
breakup. We observe convergence of D similar to figure 3(a). For k = 40, at 145 ×
145 × 145 and 161 × 161 × 161, a bounded deformation is observed in contrast to
unbounded growth at coarser levels. The results indicate that k ∼ 40 corresponds
to a critical condition for breakup. In figure 3(c), just below (k =36) and above
(k =43) the critical condition, we obtain an unbounded and a bounded deformation
respectively, and the simulation converges with grid refinement in both cases. This
implies that although it becomes difficult to obtain grid convergence at the critical
limit, away from it the simulation becomes insensitive to discretization, and critical
breakup conditions can be estimated within a certain error-bound using the present
simulation methodology.

In figure 3(d), the wall effects are checked by doubling the size of the domain Ld

for the same cases investigated in figure 3(a, b). Neither bounded nor unbounded
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Figure 4. D vs. t ′ with varying interfacial tension parameter k for λ= λρ = 1: (a) Re = 1,
(b) Re = 10.

deformations are affected by the increase of Ld . Even the shape of a stretched drop
at the same time instant does not display much difference with different domain sizes.
Very slight deviation appears only for highly elongated drop with large deformation
(D > 0.6) when the drop starts being affected by the existence of boundary.

4.2. Drop deformation: effects of the rotation of the extension axis

We first consider the case of a viscosity-and-density-matched drop where the drop is
manifested solely by the presence of interfacial tension. As was mentioned in § 2.1, the
velocity gradient (rotating extension) of a vortex transforms into a steady shear under
a rotation of coordinate axes. In figure 4(a), we plot the deformation D vs. t ′ with
varying interfacial tension parameter k at Re = 1, λ= λρ =1 in a steady extension, a
vortex and a steady shear. Note that for shear the values of k have been taken to be
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half that in the other cases, for a velocity gradient in a vortex is equivalent under the
coordinate transformation to a shear with twice the amplitude. As already mentioned,
in a vortex after a short transient the drop achieves an approximately ellipsoidal
shape with its maximum axis rotating with the frequency of the imposed flow. This
results in an unvarying value of D in the long-time limit. As expected, the increase
of interfacial tension k leads to decreased deformation D. The long-time deformation
reaches a larger value in steady extensions for all k considered. Rotation inhibits
deformation as the drop does not have sufficient time to stretch before the maximum
stretching moves to different point on the drop boundary. A similar inhibition of
deformation due to the rotational component of the velocity gradient has been noted
in Stokes flow steady shear (Taylor 1934; Bentley & Leal 1986) for high-viscosity-ratio
drops. However, the deformation in a shear flow at finite inertia is less than that in
the vortex. Rallison (1981) showed that for sufficiently small deformation and for
imposed velocity gradient having the same orders of magnitudes of stretching and
rotation the deformation is determined only by the stretching part, thereby predicting
the same deformation in a shear and a vortex. However, at finite Reynolds numbers
and for large deformations, extension, shear and rotating extension (in a vortex) flows
are all different in their effects on the drop, as is seen in figure 4(a).

In figure 4(b), we increase the Reynolds number to Re = 10. As reported by
Ramaswamy & Leal (1997) amd Li et al. (2000), inertia promotes deformation. Indeed
at large Reynolds number, as mentioned before, the drop dynamics is determined by
the balance between capillary and the inertial forces. At k = 50, the steady deformation
Ds increases from Ds ≈ 0.05 for Re = 1 (figure 4a) to Ds ≈ 0.17 for Re =10. Increased
inertia also leads to significant oscillations during the initial transient. As k is
doubled from k = 50 to 100, the period of such oscillations T (the difference of
t ′ between two maxima) decreases from around 0.9 to 0.6. This can be explained by
the a second-order ODE model described in the Appendix. The drop in a vortex is
modelled as a forced–damped mass–spring system (Sarkar & Schowalter 2001a). The
governing ODE predicts a non-dimensional natural frequency of free oscillation

Ŝtn =

√
2k̂/[(1 + λ̂ρ)R̂e]. For the present case, T̂ k̂ = 50/T̂ k̂ = 100 = f̂ k̂ = 100/f̂ k̂ =50 =

√
2,

which matches the simulated results Tk = 50/Tk =100 ≈ 0.9/0.6 ≈
√

2. Oscillations during
transients were also found in a finite-inertia computation of a drop in steady shear by
Renardy & Cristini (2001a). Corresponding to figure 4(a), we plot the deformation D

for drops in simple extensional flow in figure 4(b). In contrast to figure 4(a) for Re =1,
the simple extensional flow at Re =10 leads to smaller deformation than the vortex
flow. The imposed rotating flow induces a pressure field at finite inertia due to the
balance of ρ∂u/∂t ∼ ∇p in the Navier–Stokes equations. The enhanced deformation is
caused by this rotation-induced pressure field which becomes dominant at the higher
Reynolds number. This effect can be explained by the ODE given in the Appendix.
Note that |X| from (A 6) mimics deformation. The enhancement in deformation is

due to the dominance of the second term of order ∼ R̂e2Ŝt2 in the denominator that
results from the pressure term in the governing equation (A 1). We conclude that the
rotation of the extension axis inhibits drop deformation at low Re but promotes it at
high Re.

To investigate further the effects of Reynolds number, in figure 5, the steady-state
drop shape together with the flow field in the (x, y)-plane through the centre of
the drop at the same time instant is displayed. The cases of vortex flow and simple
extensional flow are compared at different k and Re. At k = 100 and Re =1 (figure 5a),
similar fields are observed for both flows, with slightly stronger eddies and smaller
deformation for the vortex (also see figure 4a). In figure 5(b), with increase of inertia



Drop deformation in a vortex at finite inertia 11

0.7

y

x

y

x

y

x

y

x

y

x

y

x

(a) Vortex Steady extensional flow

(b)

(c)

0.6

0.5

0.4

0.3
0.3 0.4 0.5 0.6 0.7

0.7

0.6

0.5

0.4

0.3

0.3 0.4 0.5 0.6 0.7

0.7

0.6

0.5

0.4

0.3

0.7

0.6

0.5

0.4

0.3

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

0.7

0.6

0.5

0.4

0.3
0.3 0.4 0.5 0.6 0.7

0.7

0.6

0.5

0.4

0.3

0.3 0.4 0.5 0.6 0.7

Figure 5. Comparison of flow and drop shape in the (x, y)-plane through the centre of the
drop, for vortex and steady extensional flow in steady state, λ= λρ = 1: (a) Re =1, k = 100;
(b) Re = 10, k = 100; (c) Re = 10, k = 50.

to Re = 10, the flow symmetry about the drop axis is broken in vortex flow (see
the phase difference), while no significant change of flow structure appears in simple
extensional flow. For vortex flow at k =100 and Re = 10 (figure 5b), two stronger
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Figure 6. (a) Steady-state deformation Ds and (b) phase lag β vs. k; λ= λρ = 1. Inset of
(b) shows the definition of phase lag β .

eddies emerge near the two ends due to the counterclockwise rotation. At high inertia
(Re = 10), an additional centrifugal force in the vortex is acting on the deformed
(non-spherical) drop to push interior fluid towards the two ends, generating a large
dynamic pressure there. For lower interfacial tension parameter k = 50 and Re = 10
(figure 5c), the ratio of the centrifugal force to interfacial tension is larger, leading to
increased deformation and prominent asymmetry in the vortex.

In figure 6(a), the long-time deformation Ds vs. k is plotted at different Re for
both vortex and steady extension flows. Ds decreases monotonically with increasing
k. At large k, a Ds ∼ k−1 = Ca scaling is observed. Note that such a scaling holds in
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both Stokes flow (Taylor’s analytical result is shown) and flows with inertia (Sarkar
& Schowalter 2001a, b; Renardy & Cristini 2001a). It is predicted by the ODE model
in the Appendix as well, |X| ∼ k̂−1 as k̂ → ∞. The onset of asymptotic scaling is
delayed for the higher Reynolds number case. Similarly to figure 4, the vortex (at
k = 50) induces smaller deformation at low inertia (Re = 1) and larger deformation
at higher inertia (Re = 10) compared to steady extension. As the interfacial tension
parameter k increases, the inhibitive effects due to axis rotation gradually dominate
centrifugal effects, and even at the higher Reynolds number of Re =10, the vortex
inhibits deformation, roughly at higher than k = 400.

The drop axis does not rotate in phase with the flow axis, as shown in figure 2.
In figure 6(b), the variation of phase lag β with k is plotted in steady state. β is
defined in the inset as twice the angle between the axis of stretching and the drop axis
(one period for the drop corresponds to half a period for the flow). β decreases with
increasing k, reaching a constant asymptotically for large k. Note that for Re =1, β is
positive, while for Re = 10, β becomes negative, indicating that the phase of the drop
response is ahead of the flow. As we mentioned before, rotation induces a pressure
field for finite inertia. The rotation-induced pressure field is out of phase with the
imposed velocity. The phase response of the drop is governed by both the viscous
force and the induced dynamic pressure. The behaviour can be explained by the ODE
model (see the Appendix). The phase lag is mimicked by the model parameter β̂; the
negative value of β is due to the negative second term in equation (A 7) which is a
result of the dynamic pressure. It eventually dominates the first term as k̂ increases at
finite Re. Li & Sarkar (2005a) observed similar behaviour for the deformation phase
for a drop in an oscillating extensional flow. The phase between the imposed flow
and the drop response plays an important role in the overall rheological response of
an emulsion of drops. The phase between the imposed strain and the effective stress
of the emulsion determines the viscous and viscoelastic part of the effective stress
(Li & Sarkar 2005b, c, d).

4.3. Inertia-driven breakup and critical behaviour

Fluid inertia promotes drop deformation. Continuously increasing Re eventually leads
to drop breakup. In figure 7(a), at k =10, λ= λρ = 1, an increase of Re induces a rapid
increase of deformation D. For Re > 0.3, the drop does not reach a bounded shape;
the interfacial tension fails to balance the dynamic pressure leading to inertia-driven
breakup. In figure 7(b), the drop shapes at the same instant before breakup are
plotted. For breakup at low inertia (Re =1.0, left), the drop is significantly stretched
to a slender shape (L/l � 1) before rupture due to capillary instability. However, in
vortex flow at higher inertia (Re =10.0 right), centrifugal forces push the interior
fluid towards the ends. The perturbation flow fields due to the drop are shown as
well. Strong perturbation occurs near the end regions with large curvature, where the
interfacial tension induces the largest stresses.

For a fixed interfacial tension parameter k, there exists a critical Re for breakup,
and correspondingly for a fixed Re, there is a critical k. In figure 8, we plot critical
capillary number Cacr = k−1

cr as a function of Re. The critical values are determined
by decreasing Ca (or increasing k). The Ca at which the drop starts to attain
bounded deformation is taken as the critical value. Since deformation D displays
divergence near critical conditions (figure 3b), the critical Ca obtained using the
present discretization (113 × 113 × 113) is in fact a lower bound, i.e. below this value
the physical solution of D must be bounded. The upper bound of the critical value
(shown in the plot for some Re) is determined as the Ca at which the drop starts to



14 X. Li and K. Sarkar

0.5
(a)

(b)

0.4

0.3

D

y

0.2

1.0

0.8

0.6

0.4

0.2

0.25 0.50
x

0.75 1.00 0.25 0.50
x

0.75 1.000

1.0

xz

y
xz

y0.8

0.6

0.4

0.2

0

0.1

0 1 2
t′

3

Re = 0.1
Re = 0.3
Re = 3.0
Re = 10.0
Re = 30.0

4

Figure 7. (a) D vs. t ′ for varying Re at k =10, λ= λρ = 1. (b) The drop shape together with
perturbation flows just before breakup for: t ′ = 4π,Re =1, k = 5 (left) and t ′ = 4π,
Re= 10, k = 35 (right).

show converged unbounded deformation for all discretizations as Ca is increased. As
seen in figure 8, Cacr decreases with increasing Re. At low inertia (Re = 0.1), we find
Cacr ≈ 0.2 in vortex flow in comparison with Leal’s experimental value Cacr ≈ 0.13
in steady extension (These experiments were performed at a much smaller Reynolds
number; Bentley & Leal 1986.) Note that the experiments were performed starting
from a rest state and increasing the velocity slowly to its final value, so that the drop
goes through equilibrium states at every intermediate stage. As a result, they noted
that the value of the critical capillary number they obtained is really a physical upper
limit over all possible values that may occur for different flow histories. The higher



Drop deformation in a vortex at finite inertia 15

Cacr

C
a c

r(
D

cr
)

Dcr

Re–1

10–1

10–2

10–1

10–1 101

Re

Figure 8. The critical capillary number Cacr and critical steady deformation Dcr vs. Re.

values of Cacr obtained here are due to reduced stretching in the rotating vortex
flow. For large inertia (Re > 20), figure 8 shows that Cacr reaches an inviscid limit.
The Weber number Wecr = ReCacr, which is independent of viscosity, determines the
critical behaviour, giving rise to Cacr ∼ Re−1 scaling for Re > 20. We found the critical
Weber number in this case to be Wecr ≈ 0.23. Similar scaling has been reported in
simple shear and extensional flow (Ramaswamy & Leal 1997; Renardy & Cristini
2001a). The critical long-time deformation Dcr (also shown in figure 8 on the same
ordinate axis) correspondingly shows a decrease with increasing Re, and finally
reaches an asymptotic value of around 0.2 as Re → ∞.

4.4. Behaviour with varying viscosity ratio

At a fixed Re = 1, we investigate the effects of viscosity ratio by increasing λ from
0.01 to 10.0. The evolution of D with different viscosity ratios is plotted in figure 9(a).
For smaller λ, its increase, e.g. from 0.01 to 0.3, leads to increased deformation from
0.3 to 0.35. At λ= 3.0, the drop shape undergoes continuous stretching, leading to
fragmentation. On further increase of λ from 3.0 to 10.0, however, a steady bounded
drop shape is attained. The phenomena can be explained as due to the increased
damping at higher drop viscosity (Sarkar & Schowalter 2001b), which is also found
in Stokes shear flow (Bentley & Leal 1986).

Figure 9(b) shows drop shape and flow field at the same time instant for two
different λ values, keeping other parameters fixed. With increasing λ, the phase-lag
between the maximum axis of the drop and that of the extension increases. At λ=0.1,
four strong eddies form asymmetrically inside the drop. Note that the shape of the
drop in vortex flow at λ=0.1 appears nearly ellipsoidal in contrast to the spindle
shape with two sharp tips in steady extension flow (Bentley & Leal 1986). The velocity
at the tips is non-zero, in accordance with the rotating kinematics of vortex flow. At
higher viscosity ratio λ=10.0, only a single weak eddy is observed inside the drop
with the fluid approaching rigid body rotation due to the large drop viscosity. A
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Figure 9. (a) D vs. t ′ and (b) detailed flow and drop shapes at Re = 1, k = 10, λρ = 1 and
different viscosity ratio λ= 0.1 (left), λ=10.0 (right).

similar structure appears for high-viscosity drops in simple shear (Stone 1994). At
high viscosity ratio, the drop behaviour in vortex flow resembles that in shear instead
of extension flow, due to the rotation of the stretching axis.

In figure 10, Cacr is plotted as a function of λ. Similarly to figure 8, we determined the
numerical lower bound and upper bound of the critical value. The vortex flow results
are compared to two steady linear flow experiments by Bentley & Leal (1986) – one
is an extensional flow that does not have any rotational or antisymmetric component
in the velocity gradient (characterized by α = 1, note that α = 0 corresponds to simple
shear) and the other one with a rotational component (α = 0.2). Cacr varies non-
monotonically with λ, slightly decreasing with λ at low λ but increasing at high λ
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Figure 10. Critical capillary number Cacr vs. λ; λρ = 1. The simulation data for vortex flow
at Re =1 are compared with experimental results in linear Stokes flow.

for the vortex and the linear flow with rotation. At λ=10, a very large flow strength
(Ca > 1.0) is required to burst the drop. As seen in figure 9(b), high viscosity ratio
leads to significant damping due to fluid rotation inside the drop, reducing the net
stretching force and making the breakup difficult.

4.5. Density ratio variation: resonance breakup

At density ratio different from unity, the drop experiences a centrifugal force leading
to a radial drift in the drop across circular streamlines associated with the vortex flow.
The Stokes number signifying the particle response time relative to the characteristic
time of the flow determines the drift. Here we have not considered this radial motion.
In figure 11(a), we plot D at Re =1, k = 10, λ= 1 but with varying density ratio
λρ . At λρ = 0.1 and 0.3, the deformation attains a bounded value. At λρ = 3, the
deformation is enhanced leading to unbounded growth. However, as λρ is further
increased to 10, the deformation appears to remain bounded after t ′ =7. At λρ = 30,
the drop attains a bounded steady shape with lower deformation in the long time
limit although it shows long transients with significant oscillation. In figure 11(b), D is
plotted at different interfacial tension parameter k but fixed λρ =10. The deformation
in the initial part decreases with increasing interfacial tension. However, for k = 2,
5 and 10, D changes characteristics and they cross each other around t ′ ≈ 4. The
long-time deformation Ds increases with increase in k. At k = 16, the drop cannot
attain an equilibrium shape. As k is further increased to 20, however, a bounded
deformation is achieved. In figure 11(a) and 11(b) the long-time deformation varies
non-monotonically with increasing viscosity ratio and interfacial tension parameter
respectively. In figure 11(c), at λρ = 10, but at an increased drop viscosity λ= 10, the
oscillations of D during transients are damped, and a monotonic decrease of the
long-time deformation with increasing k is observed.

Figure 11(d) summarizes the long-time deformation by plotting Ds vs. k for different
λρ and λ. For the range of k where the drop ruptures, a long-time steady deformation
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does not exist; dashed curves are used to illustrate the tendency. We also include the
curve for λ = 1, λρ = 1 along with λ= λρ =10 for comparison. The characteristics of
the λ=1, λρ =10 case are significantly different from the other two cases. The non-
monotonic variation and the large deformation/breakup at intermediate k values can
be explained by resonance. The resonance phenomenon was suggested and explored
in detail by Sarkar & Schowalter (2001a) for two-dimensional drop deformation in
rotating and oscillating extensional flows. They also provided a perturbative small
deformation analysis (Sarkar & Schowalter 2001b) that matched very well with the
numerical simulation. Furthermore, they developed a second-order (ODE) model for
a qualitative description of the drop deformation as a forced–damped mass–spring
system (provided in the Appendix). Here the surface tension acts as a spring, viscosity
as a damping element and imposed periodic flow as forcing. As predicted by the
ODE model, the drop has a natural frequency, which depends on the variation of
interfacial tension parameter k, density ratio λρ and Reynolds number Re. The model

non-dimensional natural frequency is Ŝtn =

√
2k̂/[(1 + λ̂ρ)R̂e] (see the Appendix).

When the natural frequency matches the frequency of rotation in a vortex, the
drop undergoes resonance leading to a large deformation and possible rupture.
With a decrease in interfacial tension parameter k or increase in λρ , the natural
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Figure 12. History of drop breakup: (a) Re = 1, k =5, λ= λρ = 1; (b) Re = 10, k = 5,
λ= λρ =1; (c) Re =10, k =35, λ= λρ = 1; (d) at resonance Re =1, k = 15, λ= 1, λρ = 10.

frequency of the drop decreases. For the vortex flow the forcing frequency is very
low (St = 2). Correspondingly, at resonance, for density-matched drops, k is too low
for the interfacial tension forces to balance the stretching due to the flow. The drop
breaks, and the small deformation theory of resonance loses its validity (Sarkar &
Schowalter 2001a, b). That explains why the ascending part of the Ds vs. k curve
is not observed for drops with λρ = λ= 1, as was also the case in two dimensions
(Sarkar & Schowalter 2001a, b). However, as the density ratio is increased to λρ = 10,
resonance shifts towards larger k in figure 11(d), and the drop attains a bounded shape
for smaller k to the left of resonance. In the vicinity of resonance the deformation
becomes large leading to breakup. Note that the non-monotonic variation with
rupture at λρ = 3 in figure 11(a) is also due to resonance. We conclude that high-
density drop can experience a different breakup route through resonance in a vortex.
Vortex flows can act as a model of turbulent eddies. In such flows, resonance may
lead to breakup at relatively low strain rate, if the size and density are appropriate to
achieve resonance. Kang & Leal (1990) found a similar resonance-induced breakup of
bubbles in a subcritical time-periodic straining flow with optimized frequency. Risso &
Fabre (1998) also suggested similar resonance breakup of bubbles in turbulent flows.
Finally in figure 12, we present the evolution of the drop shapes when they break
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under different conditions. At low Reynolds numbers, breakup takes place for low
values of k when viscous forces overcome the capillary force. At higher Reynolds
number breakup shapes are different for small and large values of surface tension.
Unlike the smaller value of k =5, at k = 35 the drop takes a dumbbell shape. For
breakup initiated by resonance, the drop shape is similar to the high Reynolds number
case.

5. Summary
In this paper, the deformation and breakup of a viscous drop in an important

time-dependent flow – potential vortex – has been computationally investigated. The
flow can act as a model for eddies in turbulent flows, and can be set up in a laboratory
for determining rheological responses. A drop in such a flow experiences extension
with a rotating axis of extension. This flow is related to a steady shear flow by a
rotation of the reference frame. The effects of these two flows on the deformation of
a drop, although having some resemblance, e.g. rotation inhibits deformation at small
Reynolds number, are shown to be quite different. The drop has a very different flow
history in these two flows.

For density-and-viscosity-matched drops, the deformation is inhibited in a vortex
flow compared to that in a steady extension flow at low Reynolds numbers. At high
Reynolds number however, deformation is promoted due to an additional rotation-
induced pressure force. Correspondingly, drop breakup is found to be governed by
different mechanisms at different Re which gives rise to different drop shapes. At lower
Reynolds number, the drop lags the rotating extension, similarly to what happens
in a steady shear Stokes flow. However, at higher Reynolds number the phase angle
becomes negative due to the flow-induced pressure field, and the drop leads the
extension axis. Like simple extension in Stokes flow, an increase of drop viscosity
leads to larger viscous forces and larger deformation when viscosity ratio is small,
but for drops with high viscosity, the axis of rotation induces significant rotational
flow inside the drop, reducing drop deformation. We found critical a capillary number
for drop breakup in a vortex for varying Reynolds number and viscosity ratio, and
compared it with other flows. We found that the critical capillary number scales
with the inverse of the Reynolds number at high Reynolds numbers, indicating that
the inertial breakup is determined by the Weber number (Wecr ≈ 0.23). With varying
viscosity ratio, the critical capillary number reaches a minimum at a particular value
of the viscosity ratio, a phenomenon observed also in steady shear.

In a two-dimensional simulation (Sarkar & Schowalter 2001a, b), we found that
a drop in time-periodic flows can experience resonance-induced enhancement of
deformation when the natural oscillation frequency of the drop matches the forcing
frequency. As a result, the deformation shows non-monotonic variation with interfacial
tension parameter and Strouhal number of the forcing flow. However, for a vortex, the
Strouhal number (=2) is too low to induce resonance for the density-and-viscosity-
matched drop that was considered by Sarkar & Schowalter (2001a). In the current
investigation, we find that a drop with density larger than that of the surrounding fluid
can experience larger deformation with possible breakup. This provides an alternative
mechanism for size-selective breakup of drops with a particular density in turbulent
eddies.

The authors acknowledge one of the reviewers for his comments regarding the
critical shape at breakup and radial drift. K.S. acknowledges support from the
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Appendix. A simple mass–spring–dashpot model
The dynamics of drop deformation in a vortex can be qualitatively described

by a simple ODE model introduced by Sarkar & Schowalter (2001a). A drop
subjected to vortex flow can be modelled as a mass–spring–dashpot system with mass

(1 + λ̂ρ)ρ̂R̂3/2, damping (1 + λ̂)µ̂/2 and spring Γ̂ (interfacial tension). R̂ is the drop
radius. The hat is used to differentiate the model variables from their real counterparts.
Forced by the vortex flow represented as G0g(t) (G0 is the velocity magnitude, g(t)
indicates time-periodicity), drop deformation is modelled by a second-order ODE:

1 + λ̂ρ

2
ρ̂R̂3Ẍ +

1 + λ̂

2
µ̂R̂Ẋ + Γ̂ X =

1 + λ̂

2
µ̂R̂G0g(t) +

1 + λ̂ρ

2
ρ̂R̂3G0ġ(t). (A 1)

The initial condition is

Ẋ(0) = G0g(0), X(0) = 0. (A 2)

The forcing terms on the right-hand side of (A 1) are chosen to mimic the viscous stress
(first term), and the unsteady dynamic pressure (second term). From the momentum
equation (2.2), ρ∂u/∂t ∼ ∇p, one can see that an unsteady flow G0g(t) gives rise to
such a pressure. An oscillating flow is specified by g(t) = exp(iωt).

The model is non-dimensionalized using the length scale R̂ and time scale R̂/G0:

1 + λ̂ρ

2
R̂eẌ +

1 + λ̂

2
Ẋ + k̂X =

1 + λ̂

2
g(t) +

1 + λ̂ρ

2
R̂eġ(t), (A 3)

Ẋ(0) = g(0), X(0) = 0, g(t) = exp(it ′Ŝt), (A 4)

where the non-dimensional numbers are R̂e = ρ̂R̂G0/µ̂, k̂ = Γ̂ /(µ̂G0),Ŝt = ωR̂/G0,
and t ′ = tG0/R̂. The solution of this ODE is

X =
(1 + λ̂) + i(1 + λ̂ρ)R̂eŜt

2k̂ − (1 + λ̂ρ)R̂eŜt2 + i(1 + λ̂)Ŝt
exp(it ′Ŝt), (A 5)

with a magnitude

|X| =

√√√√ (1 + λ̂)2 +
(
1 + λ̂ρ

)2
R̂e2Ŝt2

[2k̂ − (1 + λ̂ρ)R̂eŜt2]2 + (1 + λ̂)2Ŝt2
, (A 6)

and a phase lag β̂ behind the forcing [X = |X| exp i(t ′Ŝt − β̂)]:

β̂ = tan−1 2Ŝt

k̂(1 + λ̂)

[(
1 + λ̂

2

)2

− k̂

(
1 + λ̂ρ

2

)
R̂e +

(
1 + λ̂ρ

2

)2

R̂e2Ŝt2

]
. (A 7)

The system retains a natural frequency Ŝtn =

√
2k̂/[(1 + λ̂ρ)R̂e]. From the solution

(A 6), it is observed that as k̂ is varied, |X| reaches a peak value and the system

undergoes resonance when Ŝtn = Ŝt . Note that this model is only qualitative, and may
not quantitatively compare with the simulation. However, it contains the essential
physics, and therefore describes the observed trends and various scalings.
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