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Abstract

Numerical algorithms based on boundary element methods are developed for application to problems in Electrical Impedance Tomo-
graphy (EIT). Two types of EIT problems are distinguished. In the first type internal boundaries of domains of constant conductivity are
imaged. For such problems an algorithm based on identifying the shape of the included region is developed, and uses conventional BEM
techniques. For problems where a distribution of conductivity is to be imaged algorithms that use dual reciprocity techniques are developed.

The size of the inverse problem required to be solved is much reduced, offering substantial speed-ups over conventional techniques.
Further, the present algorithms use simple parametrization of the unknowns to achieve efficiency. Numerical results from tests of this
algorithm on synthetic data are presented, and these show that the method is quite promising.q 1998 Published by Elsevier Science Ltd. All
rights reserved
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1. Introduction

In electrical impedance tomography (EIT) the distribu-
tion of impedances inside an object (‘image’) is sought by
applying specified currents at some electrodes, and perform-
ing measurements of the voltage at other electrodes. The
equations for the electric field then provide a relationship
between the impedance distribution inside the medium and
the measured voltages and applied currents. Different kinds
of materials have different impedances, and the availability
of an impedance map provides an image of the material
distribution. EIT provides an exciting possibility for low-
cost imaging, as it uses relatively inexpensive electricity
sources for the probing in contrast to the other imaging
techniques that rely on nuclear or X-ray radiation or difficult
to construct magnetic elements. Since the mid 1980s EIT
has seen intense research efforts to develop it into a useful
technique for medical and process imaging, and significant
progress has been made on the modeling, implementation
and use of the technique [1,2].

Impedance tomography techniques are indirect, in that
the image must be deduced from voltage measurements
which must then be transformed and interpreted to obtain

the required image. Achieving this image requires the
solution of a non-linear inverse problem, which can only
be solved by using iterative techniques. The iterative algo-
rithm for reconstruction as implemented in our study is
summarized as follows:

1. Assume a conductivity distribution.
2. Using this distribution, and the applied currents predict

the voltage at the measurement electrodes. This is called
the forward problem.

3. Compare the predicted voltages with the measured
values, and determine the error between the measure-
ment and the prediction.

4. Stop if the error is below a specified tolerance. Otherwise
generate a new guess for the conductivity distribution
using an error minimization procedure, and repeat the
iterative steps.

This is illustrated in Fig. 1. The inverse problem is known
to be ill-posed [2]. As a consequence up to now one had to
accept images of poor quality. Further, classical schemes
based on the finite element method (FEM) are often very
time consuming, and require extensive computational
resources, which make them impractical from an opera-
tional viewpoint.

This has led to the wide use of backprojection methods to
obtain the image [3], which are based on the idea that the
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sought image is a perturbation of a known configuration.
However, the backprojection methods are restricted to par-
ticular geometries, often provide only qualitative images,
and become quite inaccurate when there are large variations
of the conductivity in the domain being imaged [4,5,8].

1.1. Approach

1.1.1. Forward problem
Previous investigators have used the finite-element

method (FEM) for solving the forward problem. The FEM
requires discretization of the whole domain into elements,
which are associated with unknown values of the electric
potential. Accuracy requires that a large number of ele-
ments/variables be used for the discretization. For complex
distribution of materials or in three-dimensional problems, a
very large number of unknowns is therefore required, and
the solution of the forward problem becomes computation-
ally intensive. To increase the efficiency of the solution of
the forward problem we employ boundary element methods
(BEM).

These methods convert the field equations to integral
equations posed on the boundary of the domain, and effec-
tively reduce the dimension of the numerical problem. Only
the boundaries of the domain need be discretized, resulting
in a considerable reduction in the number of variables
required for an accurate solution. The task of meshing the
domain is also simplified.

1.1.2. Inverse problem
The solution of the inverse problem, requires ‘para-

metrization’ of the impedance, i.e. the distribution of

impedance must be represented in terms of a set of para-
meters. Specification of these parameters determines the
impedance distribution. The solution of the inverse problem
then consists of determining these parameters. Typically in
FEM based approaches, a simple parametrization related to
the discretization is used, and the conductivity is treated as
unknown on each element [6]. This results in a large mini-
mization problem. Further, new estimates of the conduc-
tivity at each iteration require the complete evaluation of
the FEM matrices each time the forward problem is to be
solved [5]. These factors make the solution of the inverse
problem computationally intensive. To reduce the size of
the inverse problem we use simpler parametrizations of the
unknown conductivities that utilize available a priori knowl-
edge about the problem.

2. Problem equations

Let us consider an Electrical Impedance Tomography
problem where we know the current at all of the boundary
S of a domainQ, and the voltage at selected points on the
boundary. We haveNE different current patterns applied
using M different electrodes. The current in between the
electrodes is taken to be zero. The electrical potential at
the electrodes is also available. Our objective is to obtain
j, the distribution of conductivity in the material.

The electric potential,f, satisfies the following equation
wheren is the boundary normal [7,20]:

=·(j=f) ¼ 0 in Q (1)

subject to
j

]f

]n
andf measured at the electrodes

]f

]n
¼ 0 on the rest of the boundary:

8>><>>: (2)

A direct method for obtainingj from such measurements is
not readily available. Instead, starting from a guessed dis-
tribution of j, a ‘forward problem’ is solved. Then, mini-
mization of the error between the predicted and the
measured values off on the boundary is sought for the
next guess of thej distribution, and the procedure is
repeated until satisfactory convergence is achieved. Fig. 1
illustrates the problem.

2.1. Formulation of the EIT problem for use with the BEM

For convenience of the BEM formulation, the domain
equation is expressed in one of two forms which explicitly
display the Laplacian operator in the governing equations.
In the first, the equation is represented as

=2f ¼ ¹ = log j·=f ¼ b(x,f): (3)

In this form the equation is subject to the same boundary
conditions as in (2).

Fig. 1. Notations and operational concept of an Electrical Impedance
Tomography experiment.
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The EIT problem can also be formulated as the Helmholtz
equation by making the variable transformation,u¼

���
j

p
f,

which leads to

=2u¼ ku, wherek(x) ¼
=2 ���

j
p���
j

p : (4)

To complete the change of variable we must transform the
boundary conditions. This variable transformation converts
a general linear boundary condition of the form

af þ b
]f

]n
¼ f , to a ¹ b

n·=j

2j

� �
uþ b

]u
]n

¼
���
j

p
f : (5)

This transformation includes the Dirichlet and Neumann
conditions of (2) as special cases.

2.2. Simplified equations for constant conductivity regions

Often the sample to be imaged consists of regions of
almost constant conductivityj1 embedded in a continuous
phase of another almost constant conductivityj2. In this
case the goal of the imaging is to determine the shape of
the interfaceSint. Since the conductivity is practically con-
stant within each of the materials, the field equation reduces
to

=2fi ¼ 0 in Q, i ¼ 1,2:

The boundary condition at the outer surface remains the
same as in (2). We must however add the conditions of
continuity of the potential and flux at the unknown inter-
face(s)Sint,

f1

�����
Sint

¼ f2

�����
Sint

, j1
]f1

]n

�����
Sint

¼ j2
]f2

]n

�����
Sint

: (7)

In these problems the forward problem consists of the
solution of Laplace equations coupled by boundary con-
ditions of the form (7).

An additional important simplification arises if the inter-
faces to be imaged enclose materials of vanishing conduc-
tivity. Such situations are common in practice, e.g. in
determining the distribution of air bubbles in a liquid
[9,21,22], or determining the shape of an embedded hollow
region by making measurements at an accessible boundary
as in non-destructive evaluation of corrosion or cracks in
metallic structures. In this special case, the boundary con-
ditions (7) simplify to

]f

]n
¼ 0, on Sint: (8)

It is important to mention that these interface determination
problems are ones that traditional FEM based EIT methods
find very difficult to solve, as the unknown interface is not
naturally treated in these methods, but is accounted for by
variation of the conductivity.

3. Forward problem solution using BEM techniques

Solving an EIT problem using a Boundary Element
Method (BEM) has the invaluable advantage of consider-
ably reducing computational time especially for three-
dimensional problems. Indeed, by requiring discretization
of only the boundary, the BEM reduces the dimension of the
problem by one, and leads to orders of magnitude reduction
in memory and CPU time requirements.

Let us denote the fundamental solution to Laplace’s
equation byG, so that

=2G(x, y) ¼
2pd(x ¹ y), in 2D

4pd(x ¹ y), in 3D

(

whereG¼
log x ¹ y
�� ��, in 2D

¹ x ¹ y
�� ��¹ 1, in 3D

8<: (9)

As presented below, (1) and (6) can all be reformulated via
Green’s identity:

apf(x) ¼

∫
Q

=2f(y)G(x, y)dV

þ

∫
S

n· f(y)=G(x,y) ¹ G(x,y)=f(y)
� �

dS, ð10Þ

whereap is the angle in 2D (solid angle in 3D) under which
the pointx sees the rest of the domain. For formulations with
smooth boundaries we typically have:

a¼
2,x [ Q in 2D

4,x [ Q in 3D
a¼

1, x [ S in 2D

2, x [ S in 3D

((

3.1. BEM for Laplace’s equation

For Laplace’s equation (6) the volume integral in (10)
vanishes. The surface integrals can then be performed by
suitably discretizing the boundaries. In 2D we accomplish
this by fitting cubic splines through known points on the
boundary, while in 3D we use plane triangular discretiza-
tions of the boundary. This enables us to write Green’s
identity in the form

apf(x) ¼
∑

k

∫
Sk

f(y)
]G
]n

(x,y) ¹ G(x,y)
]f

]n
(y)

� �
dSk: (11)

Over each boundary elementSk a linear Lagrangian inter-
polation off and]f=]n is performed using the values at the
nodes (spline-knots in 2D, triangle vertices in 3D). The
resultant boundary integrals can then be performed, leading
to a discrete relation between the values off at pointsx, and
the values off and]f=]n on the boundary nodes. Following
a collocation approach, by selecting the pointsx to be the
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nodes onS, a linear system of equations of the form

A
]f

]n
¼ Bf (12)

results. HereA and B are matrices corresponding to the
discretization and integration with the Green’s function
and its derivative. On accounting for boundary conditions
at the collocation points, one obtains a closed system of
equations, which may be solved forf and ]f/]n at the
boundary. Knowing these quantities, (10) can be used to
obtainf at any other pointx. The process of discretization,
evaluation of the normals, integration (including singular
cases when the collocation node lies in the interval of inte-
gration), etc. is an involved process. Our treatment of these
issues can be found in Refs. [10–12].

3.2. Dual reciprocity method

For equations of the type

=2f ¼ b x,f, =fð Þ, (13)

substituting for=2f in (10) leads to

apf ¼

∫
S

f
]G
]n

¹ G
]f

]n

� �
dSþ

∫
Q

GbdQ: (14)

The presence of a non-constantb in the domain integral
prevents a boundary-only formulation. To overcome this
difficulty and transform (14) into a boundary-only formu-
lation the Dual Reciprocity (DR) method [13,23] is applied.
To do sob is expressed in terms of a special set of known
basis functions {f j}, j ¼ 1,...,N.

b(x) ¼
∑N
j ¼ 1

aj fj xð Þ, b ¼ Fa, a ¼ F¹ 1b: (15)

The functions {f j} have the property that for each function
{ f j} there exists another known function {w j} related to it by

=2wj ¼ fj , (16)

i.e.w j is a particular solution of Poisson’s equation withf j as
the right hand side. We can use Green’s identity (10) forw j

and express the domain integral in (14) as∑N
j ¼ 1

aj

∫
Q

fjGdV¼
∑N
j ¼ 1

aj

∫
Q

=2wjGdV

¼
∑N
j ¼ 1

aj apwj ¹

∫
S

n· wj=G¹ G=wj

ÿ �
dS

24 35: ð17Þ

By substituting in (14) we obtain the following boundary
only formulation:

apf ¼

∫
S

]G
]n

f ¹ G
]f

]n

� �
ds

þ
∑N
j ¼ 1

aj apwj ¹

∫
S

G
]wj

]n
¹ wj

]G
]n

� �
dS

24 35: ð18Þ

Again discretizing the boundaries usingK nodes and collo-
cating, the following equation is obtained:

apf xi

ÿ �
¼

∑K
k¼ 1

Bikfk ¹ Aik
]fK

]n

� �

þ
∑N
j ¼ 1

aj cpwj(xi) þ
∑K
k¼ 1

Bikwkj ¹ Aik
]wkj

]n

� �" #
, ð19Þ

wherei ¼ 1,...,K. It can be expressed in matrix vector form
as

Bf ¹ A
]f

]n
¼ Bw ¹ A

]w

]n

� �
F¹ 1b: (20)

HereA andB are the same as in (12). On accounting for the
boundary conditions we can solve forf and]f/]n, on the
boundary and subsequently forf everywhere.

In the EIT problem the termb depends on the unknown
function to be determined (f or u). In this case we also
expandf in terms of the same set of basis functions

f(x) ¼
∑

j
bj fj xð Þ, f ¼ Fb, b¼ F¹ 1f: (21)

By using (15) and the gradient of (21) the right hand sideb
in (3) can be interpolated as:

b ¼ ¹ =h·=Fð ÞF¹ 1f

¼ ¹
]h
]x

]F
]x

þ
]h
]y

]F
]y

þ
]h
]z

]F
]z

� �
F¹ 1

� �
f ¼ Hf, ð22Þ

whereh ¼ log j, and the term in square brackets indicates a
term by term product of the quantities. This enables us to
interpolate the right hand side using values off at a chosen
set of collocation points, withH the interpolation matrix.

For the formulation of (4)b can be interpolated as:

b ¼ kF ¹ 1� �
u ¼ Hu, (23)

wherek is a vector containing the values ofk¼ =2 ���
j

p
=
���
j

p
at the points at which the domain term is collocated, and the
term in square brackets is a term by term product. After
substitution ofb by the appropriate expression (22 or 23),
(20) becomes

A
]f

]n
¼ B ¹ S(k)
� �

f, whereS¼ Bw ¹ A
]w

]n

� �
F¹ 1H:

(24)

3.3. Choice of expansion functions

In the above we assumed that functions for performing
the dual-reciprocity expansion,f j, are available. We use a set
of functions proposed by Partridge et al. [13]. These func-
tions are based on the distance between the collocation point
and the point of interest, so that

fj(x) ¼ 1þ xj ¹ x
�� ��: (25)

This set of functions is already computed in the BEM algo-
rithm since the Green’s function involveslx j ¹ xl. These
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functions are termed radial functions as they depend only on
the radial distance between a point, the center of the func-
tion x j, and the evaluation pointx. Good practical conver-
gence properties were demonstrated for these functions
[13]. Recently the connection between these functions and
the radial basis functions, an area of active research area
in theoretical numerical analysis [14,15], has been
established.

3.4. Modification of the algorithms based on numerical tests

3.4.1. Internal nodes
Our tests to date with the DRBEM code developed

(described below) showed that whenb depends onf and/
or its derivatives the accuracy of the solution suffers ifb or
f show considerable variation inside the problem domain.
In these cases we have found that the addition of a few
internal points improves significantly the accuracy of inter-
polation of the right hand side and enables the method to
become very accurate, as is necessary for its use in EIT.

Therefore, we addK I internal points to theK boundary
collocation points. Collocating the equation at theK bound-
ary points yields,

apf xi

ÿ �
¼

∑K
k¼ 1

Bikfk ¹ Aik
]fk

]n

� �

þ
∑K þ KI

j ¼ 1
cpwj(xi) þ

∑K
l ¼ 1

¹ Ail
]wlj

]n
þ Bil wlj

� �" #

3
∑K þ KI

k¼ 1
Hjkfk: ð26Þ

To close the system of equations we needK I additional
equations for the newfk. This can be obtained by writing
Green’s identity withx taken to be at the internal points.
Collocating at theK I internal points we obtain equations
formally similar to (26), except that the quantitya takes
on the value appropriate to an internal point. We can then
write (26) symbolically as

B11 0

B̃21 apdij

" #
fB

fI

( )
¹

S11 S12

S21 S22

" #
fB

fI

( )

¼
A11 0

A21 0

" # ]fB

]n

0

8><>:
9>=>;: ð27Þ

We must emphasize that the number of internal nodes that
are needed is quite small — at most of the same order as the
number of boundary nodes. The feature that makes BEM
attractive when compared with domain based methods (such
as FEM) still holds, as the internal nodes cause at most a
doubling of the number of nodes, while the latter methods
require many more nodes to discretize the full space and
approximate the differential operators there.

3.4.2. Helmholtz formulation
Our tests during this study also showed that of the two

formulations available to solve the EIT equation using the
DRBEM, the Helmholtz formulation was more accurate.
We suspect that this is due to the fact that the computation
of theSmatrix in (20) in the former case requires a compu-
tation of the derivatives off using the interpolation. While
good interpolation of a function can be achieved using the
radial functions (25), the derivatives do not appear to be
interpolated as well. Further investigation of this issue is
needed. The Helmholtz formulation does not require com-
putation of the derivatives off. Our Helmholtz formulation
codes, transparently perform the variable and boundary con-
dition transformations required to convert fromf to
u¼

���
j

p
f during the solution, and convert back tof for

output, or for comparison with the ‘experimental data’
during the inverse problem solution.

3.4.3. Flow chart
A schematic flow chart for the Dual-Reciprocity BEM

codes is shown in Fig. 2. This flow chart illustrates the
use of the program both to solve the forward problem, and
as a program that is repeatedly called with differentj dis-
tributions for evaluation of the error. For a given geometry,
most of the computational work is in the evaluation of the
matrices A, B, W, ]W/]n, F¹1, and the matrix product
[BW ¹ A]W/]n]F¹1. These operations take up typically
more than 80% of the solution time. For the same computa-
tional grid, these only need to be performed once. Subse-
quent calculations, with different guessed values of the
conductivity, just involve the LU decomposition of a single
matrix, the formation of the right hand side and the back
substitution solution of a linear system. Further speed up is
obtained, when we obtain the error corresponding to several
experiments with the samej distribution. In this case the
problem requires the solution of the same decomposed
system with several right hand sides.

4. The inverse problem

4.1. Objective function for minimization

With the EIT experiments as described earlier, we have
NE experiments in which the current is known at all of the
boundary, and the potential is known atM electrodes. The
quantity to be imaged is described through a parametriza-
tion by P quantities, arranged in the vectorp. We further
know that the correct solution to the problem,f (k), satisfies
the following boundary conditions fork ¼ 1,...,NE,

]f(k)

]n
¼ g(k) on S; andf(k) ¼ f̂(k)

l on El ; l ¼ 1, …,M,

(28)
where the superscriptk refers to a given experiment,El to
electrodel, andf̂(k) refers to the measurements available at
the electrodes.

17R. Duraiswami et al./Engineering Analysis with Boundary Elements 22 (1998) 13–31



Corresponding to the parametrizationp we have an esti-
mate of the operator of the problemLp. Using a guessed
parameter vector we solve the forward problem expressed
as,

Lpf̃
(k) ¼ 0, subject to

]f̃(k)

]n
¼ g, on S: (29)

We can accordingly formM 3 NE measures of the error

ei ¼ f̂
(k)
l ¹ f̃

(k)
l , i ¼ 1, …MNE, (30)

wheref̃(k)
l are the value of the computed fieldf̃(k) at thel-th

electrode. We seek the values ofp that minimizes the above
vector of errors.

We use a least-squares approach, which reduces an array
of objectives into a single objective function:

x2 ¼
∑M3NE

i ¼ 1
f̂i ¹ f̃i p

ÿ �ÿ �2
: (31)

This approach has the disadvantage that it subsumes
detailed spatial error distribution information into one all
encompassing error function, which can have multiple
local minima.

4.1.1. Parametrization of unknowns
The solution of the inverse problem, requires changing

the guessed impedance distribution, or the location of the
inclusions, to minimize the quantityx2. In the conventional
FEM approaches for solving the problem, the whole domain

is discretized into elements. Typically the conductivity in
each of these elements is also treated as an unknown
(usually assumed constant over the element). This results
in a huge minimization problem. Further, as the conductiv-
ity appears in the equations of each element, new estimates
of the conductivity at each step require the complete evalua-
tion of the FEM matrices each time the forward problem is
to be solved.

4.1.2. Decoupled parametrization
One of the principal advantages of our BEM method for

EIT is that it permits a decoupling of the parametrization of
the unknown conductivity or surface location from the for-
ward problem discretization. This leads to a significant
reduction of the number of parameters in the inverse pro-
blem, and enables using a priori information. This has the
advantage of mitigating the ill-posed character of the pro-
blem. Furthermore, using this approach, we have been able
to develop algorithms where most of the computational
work that is required for the solution can be performed at
the outset, and subsequent solutions of the forward problem
are performed using much fewer operations. Since the mini-
mization procedures require solution of many forward pro-
blems with different values of the parameters, this approach
results in significant speed up of the minimization.

The images achieved by FEM based reconstructions tend
to be of poor quality, which require algorithms to sharpen
the images. Methods based on total variation minimization,
[16] and hyperbolic shock-fitting [17] have been proposed
for this in the literature. However, such algorithms would
tend to add further to the computational cost of the recon-
struction, and further, have the potential of introducing arti-
facts in the image. Our BEM based approach for looking for
sharp interfaces from the start has the advantage of embed-
ding this in the solution procedure.

4.1.3. Parametrization chosen for study

4.1.3.1. Distribution of inside bodies.For preliminary
testing of our codes we chose the standard 2D problems
of identifying a cylindrical object inside a cylindrical
container, on the boundary of which electric
measurements are taken. In this case we parametrized the
inner circle by the location of its center, and by its radius (3
parameters). The codes were then tested for multiple circles
in the inner domain. Of course, the choice of this
parametrization is open to the criticism that FEM codes
do not assume a specific shape. Accordingly we have also
considered single and multiple regions of arbitrary shapes
that are each described by a series of Legendre polynomials

f r, vð Þ ¼ r0 1þ
∑N
k¼ 1

rkPk cosvð Þ

 !
, (32)

and the center of the shape, leading to a total ofN þ 3
parameters. For the three-dimensional codes we considered

Fig. 2. Flow chart for the DRBEM Codes 2DynaEIT and 3DynaEIT.
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a spherical container that contains single or multiple spheres
of zero conductivity. The choice of circular and spherical
container is purely for convenience of the set-up of the
problem. The codes in their present form are written for
any user prescribed shape of the outer boundaries.

4.1.3.2. Conductivity distribution.For problems where a
distribution of the conductivity is to be obtained we have
chosen a parametrization characterized by sums of local
functions on a background constant conductivityjc (See
Fig. 3).

j ¼ jc þ
∑L

j ¼ 1
ji fi x ¹ xi

ÿ �
: (33)

Function Name Expression

Test function
exp

1
r2 ¹ a2

� �
r , a

0 r $ a
Gaussian exp¹ar2ÿ �
Modified Gaussian exp¹arnÿ �
tanh

1
2

1þ tanhn r ¹ r9ð Þð Þð Þ

The functionsf i include Gaussians, Gaussians of higher
power, Test functions, and functions based on tanh(x), and
are presented explicitly in the table above. All these para-
metrizations are able to represent blocky distributions ofj.
Also, with this choice the quantityk(x) of (4) can be calcu-
lated analytically. We thus are able to analytically obtain the
derivatives required for the Helmholtz formulation.

4.2. Constraints on the solution

In solving inverse problems it is quite important to
constrain the solution using a priori information to mitigate

their ill-posed character. For the present problem, con-
straints on the geometry of the internal surfaces, or on the
localized character of the distribution ofj can be
formulated. However, most available non-linear multi-
dimensional optimization schemes are formulated for
unconstrained problems, and do not permit imposition of
additional constraints. As discussed previously our choice
of the parametrization of the unknown interfaces or
surfaces, introduces some of this a priori information in
the form of the functionj, or in the parametrization of
Sint, without requiring specific additional constraints.

We implemented further constraints in a numerical
manner by artificially modifying the error and gradient cal-
culation procedures. For example in the case of a problem
where multiple inner surfaces are to be identified, when
presented with a configuration that leads to overlapping,
or to very large or very small sizes of the inner inclusions,
the error evaluating function returns an artificially large
value of the error, and a gradient vector set to a unit vector
in the direction that leads away from the error. Similar
constraints are applied to the cases where the conduc-
tivity distribution is being evaluated. In this case, the
centers of the radial functions are prevented from coming
close to each other, and the value ofj is forced to remain
positive.

5. Results for the forward problem

We developed a 2D BEM and a 3D BEM code to the
inner interface problem, and developed the dual reciprocity
codes2DynaEIT and 3DynaEIT. These codes constitute
the tools for the forward problem solution, and are in
addition called repeatedly in the inverse problem solution.
Sample validation results from these codes are presented
below.

Fig. 3. An example of the parametrization ofj in terms of 4 modified Gaussian functions, on a background of constant conductivity domain. The para-
metrization includes a priori information on the localized nature ofj variations.
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Fig. 4. Influence of discretization on the relative maximum error for a problem involving two concentric circles and a dipole at the origin for the distribution
of f.

Fig. 5. Distribution of the relative error for a two sphere and a monopolef at the origin. Coarse discretization (66 nodes, 128 panels) problem (R1¼ 1, R2¼ 4).
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5.1. Laplace’s equation

Fig. 4 illustrates in a particular case the influence of the
grid resolution on the maximum relative error achieved by
the code for a problem with known analytical solution. The
analytical solution chosen was that corresponding to a
dipole at the origin, and the problem geometry was that of
two concentric circles. The problem was solved with either
f or ]f/]n prescribed on the boundary, with the other vari-
able calculated. As can be seen the code is able to solve the
problem very accurately.

Fig. 5 shows the computed and analytical solution for an
imposed monopole like distribution off using the 3D code.
The domain is that bounded by two concentric spheres of
radii 1 and 4. Both spheres are discretized with 66 nodes and
128 triangular panels. This is considered a very coarse dis-
cretization but leads to errors less than 3%. We prescribedf

on the boundary and solved for]f/]n. The discretization for
a sphere using triangles can be seen in Fig. 19. The error
reduces to 1% if the number of nodes and panels is increased
to 402 and 800.

To represent the effects of discretization for a non-
spherical body we took the same monopole solution and
solved a problem on the domain exterior to an spheroid.
Again f was prescribed on the spheroid, and]f/]n com-
puted, and compared with the maximum error. The ellipti-
city a/b, was varied, and the number of nodes and panels
kept fixed at 402 and 800 respectively. The value of]f/]n at
every node was compared with the analytical value, and the

r.m.s. error (the mean over all the nodes) is plotted for
varying ellipticity a/b in Fig. 6. Herea is the length of the
stretched axis, with the other two axes of lengthb. With
increasing ellipticity the mesh becomes distorted and coar-
ser, and the error increases as expected.

5.2. Dual reciprocity code test

We first developed dual reciprocity codes for the Poisson
equation, i.e. whereb was a function of position but not off
in (13), and for the simple Helmholtz equation withb given
by ¹ l2f. These codes were accurate for some problems,
but displayed gross inaccuracies whenb varied considerably
in the domain. These observations led us to the formulation
with internal points described earlier.

In Fig. 7, we solved the Helmholtz equation withl ¼ 0·4
with f given on the boundary. In Fig. 8, the Poisson
equation is solved for a right-hand sidex2 with f imposed
based on the analytical solution. The computed values of
]f/]n at the surface (dotted line) is compared against
the known analytical solution (solid line). Fig. 9 shows
the same situation as Fig. 7 but withl ¼ 2·0. Fig. 10
shows a similar case as Fig. 8, except that the right hand
side isx3.

Figs 7 and 8 show examples where the code without
internal points performed satisfactorily, while Figs 9 and
10 show cases where the solution was poor. In the 3D
cases the problem domain is that bounded by two concentric
spheres of radius 4 and 1, both having 66 nodes and 128

Fig. 6. The r.m.s. error versus ellipticity of a spheroid for a monopole solution in a domain bounded internally by the spheroid.
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Fig. 7. The solution of the Hemlholtz Equation=2f ¼ ¹l2f on a unit disk using the 2D DRBEM code. Satisfactory solution is achieved forl ¼ 0.4 despite the
lack of internal nodes.

Fig. 8. The solution of the Poisson equation=2f ¼ x2 using the 3D DRBEM code on a domain bounded by two concentric spheres of radius 1 and 3.
Satisfactory solution is achieved despite the lack of internal nodes.
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Fig. 9. The solution of the Helmholtz Equation=2f ¼ ¹ l2f on a unit disk using the 2D DRBEM code. Forl ¼ 2 the solution displays large error.

Fig. 10. The solution of the Poisson equation=2f ¼ x3 on the domain of Figure 9. The error in the solution becomes unacceptably large.
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panels. In the 2D cases the problem is posed on the unit disk,
with 32 external nodes.

5.2.1. EIT test problem for the dual reciprocity code
To test the code on the full problem with a conductivityj

varying in the domain we considered a particular uni-
dimensional exact solution of these equations and tested it
in the 2D and fully 3D code. Specializing (1) to 1D, we get

jxfx þ jfxx ¼ 0: (34)

We look for solutions of the formf ¼ exp (f(x)), and obtain:

j ¼ exp ¹ log(fx) ¹ f
ÿ �

¼
exp( ¹ f )

fx
: (35)

This defines a family of solutions for different choices off.
Substituting forf and its derivatives we select the following
test solution for checking our codes

f (x) ¼ x, f ¼ ex, j ¼ e¹ x: (36)

Using the above solution we tested our code2DynaEIT for
a case with 80 nodes on the boundary and 48 internal nodes.
For this discretization the code achieved an almost
exact match with the theoretical solution as is illustrated
in Fig. 11. The computational grid is also shown in the
figure.

The three dimensional code3DynaEIT was also tested
against this solution, and found to perform satisfactorily.
Results for a typical case of a sphere discretized using 146
nodes and 288 panels are shown. The case used 104 extra
internal nodes. In this case the average error in the solution
is 2%. The analytical and computed solutions along with the
computed grid are shown in Fig. 12. A solution with 258
boundary nodes and 240 internal nodes achieved average
errors of 0.5%.

6. Inverse problem results

6.1. Identification of constant conductivity regions

Several approaches are available to minimizex2. For
problems where the error is a smooth function of the
parameters, approaches that use derivative information to
perform the minimization can reach the solution much faster
than those that do not. However, such methods typically
require analytical information of the derivatives, to be
much faster than techniques that do not require this infor-
mation. We are currently pursuing work on this problem
[18]. In this work we tested three simple methods for
minimization, that do not require analytical derivative
information [19].

The first was Nelder and Mead’s downhill simplex
method [19]. In this method an initial ‘simplex’ is formed
by N þ 1 guesses, whereN is the dimension of the mini-
mization problem. Then, using the magnitude of the errors
evaluated at the vertices of the simplex, the simplex is sub-
jected to a sequence of stretching, reflection and contraction
operations, to reduce the error at these vertices. These
operations ensure that as the algorithm converges, the
simplex brackets a minimum of the objective function.

The second method was Powell’s direction set method
[19]. In this method, an initial guess and a set ofN indepen-
dent search directions are provided to the program. In each
iteration the method serially performs a sequence of line-
minimizations along the directions. At the end of each itera-
tion the method replaces one of the original directions with
the line joining two starting and ending points. Care is taken
to ensure that the directions remain linearly independent.

The third method tested was the conjugate gradient
method. The Jacobian was computed using finite-differences.

Fig. 11. The solution of the EIT test problem in 2D withf ¼ ex. An almost exact match of the solution is obtained using 80 boundary nodes and 48 internal
nodes.
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Fig. 12. The solution of the EIT test problem in 3D withf ¼ ex. An satisfactory match of the solution is obtained using 146 boundary nodes and 104 internal
nodes. The discretization is on the right.

Fig. 13. The figure on the left shows the performance of the downhill simplex, Powell and conjugate gradient methods for a the solution of an EIT inverse
problem of the reconstruction of two circular inclusions of zero conductivity. The problem and the sequence of iterates for the Powell method are illustrated in
the future on the right. The initial guess is shown usingþ marks, while the exact solution is shown using open circle.
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The method was tested to see if its superior convergence rate
compensated for the larger number of function evaluations
required by the Jacobian evaluation.

6.1.1. Examples
All methods were tested first on the two-dimensional

impedance imaging problem of a large cylinder containing
one or many smaller inner cylindrical regions of zero con-

ductivity. Since each of the inclusions is modeled as a circle
it is parametrized by three parameters — the coordinates of
its center and the radius. The methods were observed to
converge very well for a variety of inner distributions of
circles of varying sizes.

A systematic comparison between the three methods was
conducted to choose one for further development. A specific
example is shown in Fig. 13. The figure shows the conver-
gence history of the Powell method, and the error conver-
gence history for all methods. Here the nodes on the
boundary of the exact solution are marked with open circles,
the nodes on the initial guess are marked withþ symbols,
and the other circles are the converged solutions at the end
of every Powell iteration. The other methods have similar
convergence histories. The error comparison in Fig. 13
shows that the downhill simplex method requires the least
number of evaluations of the error, i.e. the least number of
computations of the forward problem to lead to an extre-
mely small r.m.s. error. However, in a practical application
where the position and the radius of the sought inclusion are
only required within a reasonable amount of precision, the
Powell method appears to have the fastest initial con-
vergence rate.

The Powell method was then employed for all subsequent
evaluations. The method was tried on a problem in which
the inner shape was arbitrary, and characterized by the loca-
tion of a point, the ‘center’, and a set of Legendre poly-
nomial coefficients given in (32). The shape in Fig. 14
was arbitrarily drawn. As seen in the figure, the Powell

Fig. 14. The reconstruction of an arbitrary shape using a 13 parameter Legendre decomposition. Satisfactory convergence is seen, even after one Powell
iteration.

Fig. 15. The reconstruction of five circles of zero conductivity starting from
an arbitrary guess. Satisfactory convergence is obtained.
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method converges satisfactorily within one iteration. This
takes less than a minute on our SGI Indigo workstation.

As the number of objects is increased the dimension of
the parameter space in which the minimum has to be found
increases, and we expect the minimization to be harder.
However, we found that our Powell method code is able
to achieve the solutions to the problem. In Fig. 15 we

present the result of such an inversion for five circles. An
excellent convergence can be seen for an initial arbitrary
guess (also shown on the figure after about 10 iterations).

In Fig. 16 we show a further attempt at deducing two
arbitrary shapes using the Powell method. Again the shapes
were entered using arbitrary freehand drawing, and their
reconstruction was sought in terms of two sets of 11
Legendre polynomials. Here the Legendre polynomials can-
not faithfully represent the drawn shape. However, despite
this the method achieved a satisfactory identification.

In the previous examples the number of inclusions was
assumed known in the inverse problem solution. In Fig. 17
we show a case where two inclusions are guessed while the
domain contains three. The solution identified one inclusion
correctly and the other two are approached by an over-
lapping computed shape. Fig. 18 shows a converse case
where the three inclusions are assumed and they approxi-
mately identified the regions occupied by the two shapes
actually present. These results further emphasize the robust-
ness and flexibility of the method that would allow it to be
successful in the real imaging problems. Obviously, more
work is required to include the number of inclusions in
the parameters to be determined by the inverse problem
solution.

In three-dimensions we sought to image regions with zero
conductivity inside a larger spherical conducting region.
The first example was to correctly find the position and
radius of an included sphere of zero conductivity. Excellent
convergence is also obtained for this case. Fig. 19 shows a
successful solution of a case where the radius of the outer

Fig. 16. The reconstruction of two arbitrary shapes (–W–W–) using
Legendre polynomial parameterizations. Here the shapes cannot be repre-
sented by Legendre polynomials. Despite this a satisfactory convergence is
observed. –·– initial guess — converged solution.

Fig. 17. The identification of three arbitrary shapes (–W–W–) with number of guessed shapes to be two. The second computed shape identifies the region
occupied by the two actual shapes.- - - initial guess, —converged solution.
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domain is chosen to be 10, with the inside sphere of radius
R ¼ 2 at (3,1,¹2). The initial guess isR ¼ 5 at (2,¹3,1).
Fig. 20 shows a successful implementation of the code in the
case where two spheres were sought. The initial guess of the
spheres is shown in a cross section as the starred circles. The

final shape is marked with the circle. The figure also shows
the cross sections at different iteration numbers.

6.2. Continuous distributions ofj

Concerning the minimization procedure for a continuous
j function we have demonstrated the technique by using
Powell’s method which was found to converge very quickly
in the case of the function distributed were Gaussian bumps
on a background of continuousj. Fig. 21 shows an example.
In this case the exact and the initial guessed conductivity
distributions were

jex ¼ 1þ 0:9 exp( ¹ 10 (x)2 þ (y¹ 0:4)2� �
(37)

jinit ¼ 1þ 0:1 exp( ¹ 2 (xþ 0:1)2 þ (yþ 0:2)2� �
This case converged to within 3 significant figures in 10
Powell iterations (15 minutes CPU time), and to
machine precision in 89 Powell iterations (150 minutes
CPU time).

Similarly, in three-dimensions, we used Gaussian blobs to
model distributions of the conductivity. Fig. 22 shows an
example. In this case the conductivity distributions were

jex ¼ 1þ exp ¹ 25 (x¹ 0:3)2 þ (y¹ 0:3)2 þ (zþ 0:2)2� �ÿ �
(38)

jinit ¼ 1þ 0:5 exp ¹ 16 x2 þ y2 þ z2� �ÿ �
The results are satisfactory.

Fig. 18. The identification of two arbitrary shapes with number of guessed shapes to be three. Again the region occupied by the actual shapes is identified by the
computed shapes. The line types are the same as in Figure 17.

Fig. 19. Reconstruction of a 3D EIT problem. A spherical region of zero
conductivity embedded in an outer spherical region is sought to be imaged.
The initial guess and the converged solutions are shown.
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7. Summary and conclusions

We have developed several codes based on BEM techni-
ques for studying problems in EIT. These codes can also be
applied to the solution of general Poisson and Helmholtz
equations. The computational codes for the forward prob-
lem were optimized for use in the inverse problem by
accounting for the fact that they would be used repeatedly
with the same geometrical discretization/electrode set-up
but for different distributions of conductivity/inner-
surfaces. These optimizations make the codes run much
faster.

A new methodology for parametrizing the unknowns of

the sought impedance distribution was also developed. This
decouples the parametrization from the geometrical discre-
tization of the problem domain, and allows the inclusion of
available a priori information. This has the potential of
mitigating the ill-posed nature of the inversion considerably.
Different alternative decoupled parametrizations for the
problems were developed. Further, for problems where
sharp interfaces are sought this approach includes the infor-
mation in the formulation, and eliminates the need for a
posteriori image enhancement.

The forward problem codes were embedded in simple
standard minimization schemes (downhill simplex, Powell
and Conjugate Gradient) and found to converge to the exact

Fig. 20. Reconstruction of a 3D EIT problem. Two spherical regions of zero conductivity embedded in an outer spherical region are sought to be imaged. The
left figure shows the successive iterates. Stars are for initial guess, circles for exact and converged solution. Right figure is 3D view of initial guess and
converged solution.

Fig. 21. Reconstruction ofj in 2D given by a Gaussian bump on a constant background.
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distribution, for imaging multiple circles and spheres
respectively in 2D and 3D, for the identification of multiple
arbitrary shapes in 2D, and for imaging continuous conduc-
tivity distributions in 2D and 3D.

The presented results are the first application of DRBEM
techniques to Electrical Impedance Tomography. Further,
the 3D EIT reconstructions are, to our knowledge, the first
fully three-dimensional direct reconstructions. Earlier
researchers had attempted to obtain slice wise reconstruc-
tions, which would then be patched together, or obtain
heuristic 3D reconstructions. We have successfully demon-
strated that BEM techniques can lead to very efficient algo-
rithms for EIT. In ongoing work we are aiming at more
efficient solution of the inverse problem of EIT. [18] Future
work will aim at an experimental implementation of the
algorithms.
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