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Pair interactions between viscous drops in a viscoelastic matrix in free shear:
Transition from passing to tumbling trajectories
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DC 20052

(Received 24 September 2021; final revision received 20 February 2022; published 31 March 2022)

Abstract

Shear-induced pair interactions between viscous drops suspended in a viscoelastic matrix are numerically investigated examining the effects
of elasticity and drop deformability on their post-collision trajectory. Two different trajectory types are identified depending on the
Weissenberg number Wi and capillary number Ca. Drops suspended in a Newtonian matrix (Wi = 0.0) show a passing trajectory where drops
slide past each other and separate in the stream-wise direction. However, when increasing the Weissenberg number above a critical value, a
tumbling/doublet trajectory is observed where two drops rotate around the midpoint of the line joining their centers, as was also seen previ-
ously for rigid particles. The tumbling trajectory is explained by investigating the flow around a single drop in shear. Elasticity generates a
larger region of spiraling streamlines around a drop, which, during a pair interaction, traps the second drop giving rise to the tumbling pair.
Decreasing deformability (lower Ca) and increasing viscoelasticity (higher Wi) favor a tumbling trajectory. With simulations sweeping the
parameter space, we obtain a phase plot of the two different trajectories as functions of Ca and Wi. Treating the tension along the curved
streamlines due to the non-zero first normal stress difference in the viscoelastic medium as an enhancement to the interfacial tension, we have
developed an approximate force balance model for the zone of spiraling streamlines. It qualitatively captures the observed scaling of the criti-
cal Ca and Wi values at the phase boundary. The effects of unequal size, initial configuration, and non-unity viscosity ratio are briefly investi-
gated. © 2022 The Society of Rheology. https://doi.org/10.1122/8.0000374

I. INTRODUCTION

Particle suspensions, both rigid and deformable, in
Newtonian or non-Newtonian fluid, are omnipresent in many
natural and industrial phenomena such as blood flow, micro-
fluidics, cell sorting devices, chemical and material process-
ing, food processing, the flow of slurries, oil and gas
exploration, 3D printing, drilling muds, and paint industries
[1–5]. Macroscopic rheological properties of these suspen-
sions, i.e., the effective viscosity of the system, diffusion of
particles, shear-thinning or thickening effects, depend on the
microscopic behavior of particles such as their orientations,
interparticle interactions, cross-stream migration, deforma-
tion, and the rheology of surrounding fluids [6–9]. Therefore,
complex behaviors of a suspension or an emulsion can some-
times be understood by a single [10,11] or two-particle inter-
actions [12–16]. Here, we study the pair interactions between
two viscous drops in a viscoelastic medium in shear.

In most applications, owing to the small size and velocity,
the flow is dominated by the inertialess Stokes flow. Due to
the reversibility of the Stokes flow equation, a pair of perfect
rigid spheres in shear follow their original streamlines after a
collision [17]. Therefore, the particle separation mediated by
hydrodynamic interactions or shear-induced diffusion in a
rigid suspension cannot be explained by these reversible pair
dynamics, unless some other mechanisms such as inertia,
surface roughness, or viscoelasticity break the symmetry of

the system [12,18,19]. Following the pioneering study of
Batchelor and Green [20], several studies have explored solid
particle interactions in Newtonian and non-Newtonian fluids
elucidating the binary collision between rigid spheres in
viscous and viscoelastic media under shear [12,19,21,22]. In
the Stokes regime, a pair of rigid particles in a Newtonian
fluid approach each other in shear, rotate together as a dumb-
bell, and separate along the original streamlines, except for
very small initial stream-wise separation that can induce per-
manent doublet type of rotation due to the closed streamlines
very near the particles [12,23]. On the other hand, rigid parti-
cles suspended in a viscoelastic medium, due to the broken
symmetry, do not follow original streamlines after a collision,
and particle trajectory is no more symmetric [19]. For parti-
cles passing each other in shear, post-collision cross-stream
separation between particle centers decreases with the
increase in surrounding fluid elasticity [22,24,25]. Here, one
also encounters different types of trajectories: passing, tum-
bling, and return, depending on the initial cross-stream sepa-
ration between particle centers, confinement, and elasticity of
the surrounding fluid [12,24–26]. At low Weissenberg
number (Wi), particles collide and pass each other (passing
trajectory), but at higher Wi values, for small initial cross-
stream separations, particles collide and rotate as a dumbbell
(tumbling trajectory). Small initial separations and higher
confinement ratios induce a returning type of trajectory,
where particles come close to each other, collide, reverse,
and return [26,27]. Increasing Wi increases the critical initial
cross-stream separation distance between particle centers
where the transition from tumbling trajectory to passinga)Author to whom correspondence should be addressed: Sarkar@gwu.edu
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trajectory occurs, which suggests that viscoelasticity induced
normal stress differences keep the particles together even at
larger initial separations [26]. Numerical simulations of
effective rheology of viscoelastic suspension have found that
particle interactions have significant effects on the overall
effective rheology of viscoelastic suspensions [28,29].
Hwang et al [28] in their 2D simulation found clustering of
two particles in Oldroyd-B matrix with tumbling trajectories
and strong elongational flows between separating particles,
the latter also found by smooth-particle hydrodynamics simu-
lation of Vazquez-Quesada et al [29]. The signature of strong
retarding stresses in extensional flows was also found in
experimental investigations of extensional rheology of rigid
sphere suspensions in a viscoelastic matrix [8,30].

In the case of drops, their deformability adds additional
complexity [10,31,32]. It also breaks the reversibility of the
Stokes flow. Since the first study of Taylor [33], there have
been many investigations [6,34,35] of drops in Newtonian
and non-Newtonian systems, especially in relation to micro-
fluidics applications [36]. However, although drop-pair inter-
actions in a viscous liquid have received some attention
[35,37–40], their study in viscoelastic media is far from com-
plete [6]. Drop deformation itself provides interesting phe-
nomena absent for rigid particles, such as wall-induced
lateral migration of a single drop [41,42]. There have been
studies of inertia induced [38] and confinement-dominated
reversed trajectories after binary collision [40,43] between
viscous drops. Viscoelasticity introduces new physics, and
unlike viscous flows, our intuition about viscoelastic flows is
severely limited due to the presence of multiple forces and
complex constitutive equations that defy simple explanations.
Surrounding fluid viscoelasticity has nonmonotonic effects
on drop deformation [35,44] and viscoelasticity can also
influence wall-induced lateral migration [45,46] and align-
ment of particles [47,48]. Unlike pairwise interactions
between rigid particles, interactions between drops, which are
crucial to fully understand dilute or concentrated viscoelastic
emulsions, have not been subjected to many investigations
[6,7,9,12].

Here, we numerically study trajectories of two equal-sized
viscous drops suspended in a modified Chilcott–Rallison
[49,50] type viscoelastic fluid (also often called
FENE-MCR) under steady free shear at negligible inertia.
We study the relative trajectory between the drop centers in
viscoelastic media. The main focus of this study is to under-
stand the effect of drop deformability, capillary number, and
surrounding fluid elasticity (Wi) on post-collision drop trajec-
tories. In Secs. II and III, we describe briefly the mathemati-
cal formulation and problem setup. In Sec. IV, we describe
our numerical results offering a qualitative explanation for
the numerical observations. In the Appendix, we develop a
simplified force balance model that captures the observed
scaling behavior. Section V offers concluding remarks.

II. MATHEMATICAL FORMULATION AND
NUMERICAL IMPLEMENTATION

The mathematical formulations underlying our computa-
tional study to simulate drops suspended in a viscoelastic

matrix have been described in detail in our previous publica-
tions [32,44,45]. Here, we give a brief description for com-
pleteness. The complete drop-matrix system is governed by
the incompressible momentum conservation equations in the
entire domain Ω,

@(ρu)
@t

þ ∇ � (ρuu) ¼ ∇ � τ�
ð
@B

dxBκnΓδ(x� xB), (1)

∇ � u ¼ 0: (2)

The total stress τ is decomposed into pressure, polymeric,
and viscous parts,

τ ¼ �pIþ Tp þ Tv, Tv ¼ μsD, (3)

where p is the pressure, μs is the solvent viscosity, and
D ¼ (∇u)þ (∇u)T is twice the deformation rate tensor. The
superscript T represents the transpose. Tp is the viscoelastic
stress due to the presence of polymer. In Eq. (1), Γ is the
interfacial tension (constant), @B represents the surface of
the drop consisting of points xB, κ is the local curvature, n is
the outward normal, and δ(x� xB) is the three-dimensional
Dirac delta function. The viscoelasticity of the surrounding
fluid has been modeled by a modified Chilcott–Rallison type
[49,50] constitutive equation (also called FENE-MCR) as in
our recent computational studies [45,51]. Over the years, we
adopted the simplest rate type constitutive equation for visco-
elasticity with a single relaxation time, intending to under-
stand the physics in simplest canonical situations. Our earlier
studies used the Oldroyd-B model [32,44,52]. Unlike
Oldroyd-B, FENE-CR and FENE-MCR models have a finite
extensional viscosity. Like Oldroyd-B, they also have a cons-
tant shear viscosity. Both models have been extensively used
to model different viscoelastic flows [53–56] (see a detailed
discussion of their use in [45]). The FENE-CR [49] constitu-
tive equation in terms of the conformation tensor A is given
by

@A
@t

þ u � ∇A ¼ ∇u � Aþ A � (∇u)T � f

λ
(A� I): (4)

The relation between the stress Tp and conformation
tensor A is

A ¼ λ

μpf

 !
Tp þ I: (5)

Therefore, the stress constitutive equation becomes

@Tp

@t
þ {u � ∇Tp � ∇u � Tp � Tp � ∇uT}

þ f Tp @

@t

1
f

� �
þ u � ∇ 1

f

� �� �
þ f

λ
Tp ¼ f

λ
μpD, (6)
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where

f ¼
L2 þ λ

μp

P
Tp
iið Þ

L2 � 3
, (7)

μp is the polymeric viscosity, λ is the relaxation time, and L
is the finite extensibility, introduced by the FENE-CR model,
which limits the maximum length of the end-to-end vector
for the polymer molecule. In the limit of L ! 1, we obtain
the Oldroyd-B equation with f ! 1 in Eq. (7). We use
L ¼ 20, increasing which was shown to make little difference
in the results [45]. Note that the FENE being a nonlinear
modification does not affect the linear viscoelastic responses
G0 and G00 and results in a finite extensional viscosity in a
uniaxial extension of strength _γ for all Wi,

μE ¼ Txx � Tyy
μ _γ

¼ 3þ f β
2

f � 2Wi
þ 1

f þWi

� �
: (8)

In the limit of Oldroyd B, i.e., L ! 1 or f ! 1, one
notes the well-known singularity at Wi = 0.5, which is miti-
gated by the introduction of Eq. (7) that restricts f throughP

Tp
ii . Similar to Oldroyd B, the FENE-CR model results in

a constant shear viscosity. The rheology of FENE-CR (i.e.,
its extensional viscosity and first normal stress difference as
functions of the Wi) was provided by Oliveira [57].

The terms f Tp @
@t

1
f

� �
þ u � ∇ 1

f

� �h i
are negligible in our

simulations [50], and by dropping them we arrive at a modi-
fied FENE-CR equation,

@Tp

@t
þ {u � ∇Tp � ∇u � Tp � Tp � ∇uT}þ f

λ
Tp ¼ f

λ
μpD:

(9)

By using the elastic and viscous stress splitting method

used by [58], the viscoelastic stress can be expressed in the
following form:

(Tp)nþ1 ¼ [(Tp)n � (μpD)
n]e�(f /λ)Δt þ (μpD)

n

� λ

f
[u � ∇Tp � ∇u � Tp � Tp � ∇uT ]n[1� e�(f /λ)Δt]:

(10)

The equations are solved in a Cartesian domain and the
location of the drop is tracked with a front tracking method
[59,60]. Equations (1) and (2) along with the viscoelastic
constitutive equation (10) are solved by a semi-implicit finite
difference projection method and an alternating direction
implicit (ADI) scheme is applied to ease the restriction on
the time step. A multigrid method is used to solve the pres-
sure position equation. Details of the implementation of the
above algorithm can be found in [32,45,61].

III. PROBLEM SETUP

Two equal-sized spherical drops of radius a are placed
in a rectangular computational domain of sizes Lx ¼ 30a,
Ly ¼ 30a, Lz ¼ 5a at t = 0 in an already setup shear flow
(the effects of size difference have been studied in
Sec. IV F). The computational domain is discretized with
384� 384� 64 grid points. Initially, the drop centers are
separated by a distance of Δx0 and Δy0 in the flow and
cross-stream direction, respectively [Fig. 1(a)]. The drop
centers are always in the same vorticity plane (x–z plane).
In the y-direction, the top plate moves with a velocity U and
the bottom plate with a velocity –U obtaining a shear rate
_γ ¼ 2U/Ly. Periodic boundary conditions have been applied
in the x and z directions. The imposed shear moves the
upper (lower) drop in the positive (negative) x-direction.
The drop radius a and the inverse shear rate _γ�1 are used as
the length and the time scales to define Reynolds number

FIG. 1. (a) Schematic of the problem showing the initial separation of two drops in a shear flow. (b) Relative trajectory of pair of drops at
Δx0 ¼ 2:5a, Δy0 ¼ 0:25a, Ca = 0.2 and Wi = 0.5 in different computational domain sizes in the gradient direction. The inset shows the same for Ca = 0.01 and
Wi = 2.0.
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Re ¼ ρm _γa
2/μm, Capillary number Ca ¼ μm _γa/Γ, and

Weissenberg number Wi ¼ λ _γ. The viscosity ratio is
λμ ¼ μd/μm, density ratio λρ ¼ ρd/ρm, and polymeric to total
matrix viscosity ratio β ¼ μ pm/μm. Subscripts m and d denote
fluid and drop phases, respectively. The total viscosity of the
surrounding fluid μm comprises the polymeric and the solvent
viscosities μm ¼ μsm þ μ pm. All simulations assume λρ ¼ 1:0
and β ¼ 0:5. While performing most simulations for λμ ¼ 1:0,
Sec. IV E investigates the effects of viscosity ratio variation.
The initial separations between drops are kept constant at
Δx0 ¼ 2:5a, Δy0 ¼ 0:25a andΔz0 ¼ 0, except when we study
the effects of the initial drop separation. Re has been kept at
0.01 to achieve a flow close to the Stokes flow. The above
code was run with the help of XSEDE’s computational
resources [62].

IV. RESULTS AND DISCUSSION

A. Effect of domain size

Investigation toward the viscoelastic code validation and its
convergence can be found in our previous works [32,45].
Note that here we study drop interactions in an unconfined
flow. However, the computational domain is subjected to peri-
odic boundary conditions in the flow (x) and the vorticity (z)
directions and wall boundary conditions in the gradient direc-
tion, the latter to generate the shear flow. The presence of
walls could significantly alter the results if the domain is not
large enough [26,40]. The domain effects have been studied
in detail in our previous publications on pair interactions
in viscous media, indicating that Lx ¼ 30a, Ly ¼ 30a,
and Lz ¼ 5a are sufficient for avoiding the boundary effects
[63], when the drops/particles are placed in the central plane.
Here, we briefly investigate the confining effects of the walls on
the relative drop trajectory [Fig. 1(b)] for four different Ly and
two different sets of Ca and Wi (one for passing trajectory and
the other for tumbling). The change in the relative trajectory of
the drops as we go from Ly = 30a to Ly = 40a is insignificant
confirming that Ly � 30a is sufficient to avoid confinement
effects. We have previously investigated the effects of grid

size for the pair-collision problem [38] indicating that the size
384� 384� 64 is more than sufficient for our purpose.
Comparison with previous experiments [13] and numerical solu-
tions [63] offers confidence about the capabilities of the code to
adequately resolve the deforming drops.

B. Effects of matrix viscoelasticity and drop
deformability

In this section, we discuss the effects of surrounding fluid
elasticity and drop deformability on the cross-stream separa-
tion between drops by varying Wi from 0.0 to 2.0 and Ca
from 0.01 to 0.2. At Ca = 0.01, drop deformation is minimal
while at Ca = 0.2, drop in a steady shear attains an approxi-
mately ellipsoidal shape [32,33,44].

In Fig. 2, we consider the relative trajectory between drops
at Ca = 0.2 as a case of a highly deformable drop for different
Wi of the suspending medium. As noted, we used initial drop
separation to be fixed at Δx0 ¼ 2:5a andΔy0 ¼ 0:25a for all
simulations. All cases led to drops passing each other.
Figure 2(a) shows the time evolution for the case of Wi = 2.0
plotting the cross-stream separation as a function of time. As
was seen in our previous investigation of a viscous system
[38], drop interactions have a signature footprint—first
approach each other (zone 1), then collide in the compres-
sional quadrant (zone 2), interact in the extensional quadrant
before separating (zone 4) and separate (zone 5) (see Fig. 2,
Multimedia view, for a movie of the trajectory). We were
able to successfully match with experimentally observed evo-
lution of drop deformation, drop inclination, separation, and
relative inclination between drops [13,38]. In Fig. 2(b), we
plot the cross-stream separation as a function of flow-wise
separation for different Wi. Note that unlike a rigid particle
pair in a Newtonian medium, the post-collision cross-stream
separation is larger than its initial value even for the
Newtonian case (Wi = 0) [17]. The symmetry under flow
reversal is broken due to the nonlinearity (the interface condi-
tions on a moving boundary) introduced by the drop defor-
mation. Loewenberg and Hinch [37] simulated this

FIG. 2. (a) Drop interaction snapshots at different simulation times along with their cross-stream separation with Δx0 ¼ 2:5a and Δy0 ¼ 0:25a at Wi = 2.0 and
Ca = 0.2. (b) Relative trajectory of the same pair of drops for different Wi values. Inset shows drop inclination with the flow for the same Wi values.
Multimedia view: https://doi.org/10.1122/8.0000374.1
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phenomenon in a viscous system using a boundary element
method and investigated the self-diffusion of viscous drops
in viscous media. In a previous article, we successfully com-
pared their results as well as those of others [14]. With
increasing Wi, the final post-collision Δy decreases, which
can be explained by noting that the drop inclination (the
angle between the semi-major axis of the deformed drop,
approximated as an ellipsoid, and the flow direction)
decreases with increasing medium viscoelasticity [the inset
of Fig. 2(b)]. The matrix elasticity aligns the drop with the
flow due to the first normal stress differences, as we also saw
in the case of a single drop in a viscoelastic medium under
shear [44]. In a drop-pair interaction, the inclination, even in
a viscous system, has been shown by both experiment and
matching computation to display a complex evolution
[13,38] with multiple maxima and minima. Initially, in the
approach phase, the drop deforms due to the shear and incli-
nation decreases, reaching a minimum when the drops are
close to each other, then they press and rotate together as a
dumbbell and separate reaching a second maximum while
separating [Fig. 2(b), inset]. But overall increasing Wi
decreases inclination resulting in drops passing more easily
leading to lower final cross-stream separation.

When the drops are less deformable, i.e., at lower capillary
numbers, they behave differently and display a new type of
trajectory—tumbling. Figure 3(a) shows the time evolution for
the case of Wi = 2.0 and Ca = 0.01 plotting the cross-stream
separation as a function of time. The drops after collision
fail to separate and continue to rotate leading to a negative
cross-stream separation (see Fig. 3, Multimedia view, for a
movie of the trajectory). We can see two peaks (zone 3 and
zone 6) while the drops come on top of each other. Such
tumbling/rotating trajectory was also observed experimentally
[23] as well as numerically [24–28] for shear-induced pair
interactions between rigid spheres in a viscoelastic medium
above a critical Wi. Figure 3(b) shows drop interaction at dif-
ferent Wi for the same Ca = 0.01. It shows passing trajectories
at the lower three values of Wi, and tumbling at Wi = 1.2, 1.5,
and 2.0. Such tumbling was observed for rigid particle pairs
in a viscous fluid [23] only for very close initial separation.

However, investigation of drop-pair collision in a viscous
system did not display tumbling trajectories [37]. This can be
ascribed to the no-slip conditions resulting in greater resistance
in the lubrication layer between rigid spheres compared to
deformable drops. During the transition from passing to tum-
bling trajectory for intermediate values of Wi = 1.2 [Fig. 3(b)],
the rotating drop centers move back and forth in the flow
direction transiently increasing their horizontal separation.
For rigid particle pairs in viscoelastic media, similar back
and forth motion was also seen during transitioning from
passing to tumbling [24]. Note that due to the symmetry of
the original problem, i.e., the symmetry of the imposed shear
flow and the symmetrical positions of the drops above and
below the symmetry plane, the relative cross-stream displace-
ment Δy ¼ ytop drop � ybottom drop ¼ 2ytop drop. This symmetry of
the problem renders the tumbling trajectory, i.e., two drops
rotating around each other, symmetric across the zero relative
cross-stream separation line, crossing it when ytop drop ¼ 0
[Fig. 3(b)], unlike in the case of passing trajectories [Fig. 2(b)].

Figures 4(a) and 4(b) plot the post-collision cross-stream
separation between drops undergoing passing trajectories as a
function of Wi and Ca after the drops reached a steady cross-
stream separation. We refer to it as the final separation
(Δy)f /a. The curves are stopped when the parameters reach
the region of tumbling trajectories, where there is no such
final cross-stream separation. For a given Ca, increasing fluid
viscoelasticity, i.e., increasing Wi, leads to lower final cross-
stream separations (Δy)f /a, eventually leading to tumbling
trajectories for lower Ca cases [Fig. 4(a)]. Similarly, for a
given Wi, lowering Ca eventually leads to tumbling trajecto-
ries [Fig. 4(b)]. For the range of Wi considered (Wi � 2),
drops for Ca greater than or equal to 0.1 do not show tum-
bling trajectory. However, less deformable drops at Ca = 0.05
and below show tumbling trajectories at higher viscoelastic-
ity. In both Figs. 4(a) and 4(b), we notice zig-zag variations
in the final cross-stream separation with Wi and Ca, espe-
cially for the small Ca (Ca � 0:05) cases. To further investi-
gate this variation, we chose the case of Wi = 0.8 with such a
variation between Ca = 0.01 and Ca = 0.05 and plot in
Figs. 4(c) and 4(d) the relative positions (Δx)/a and (Δy)/a

FIG. 3. (a) Drop interaction snapshots at different simulation times along with their cross-stream separation with Δx0 ¼ 2:5a and Δy0 ¼ 0:25a at Wi = 2.0 and
Ca = 0.01. (b) Relative trajectories of the same pair of drops at different Wi. Multimedia view: https://doi.org/10.1122/8.0000374.2
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showing them to be smooth functions of time. However, the
curves for different Ca values post-collision cross. A possible
reason could be the dual competing effects of variation of
Ca—increased Ca results in increased deformation but slower
relaxation, Ca being the timescale μma/Γ nondimensionalized
by _γ. While typically increased Ca leads to larger deformation
and thereby larger (Δy)f /a, the slow relaxation of the drop
shape post-collision could trigger a different trajectory. On the
other hand, we note that for the small Ca cases the overall
deformation is quite small, and the code uses a diffuse inter-
face to represent the drop shape and find the drop position,
which might numerically lead to the zig-zag variation.

C. Physics of transition between trajectories and
phase plot in Ca-Wi

To understand the physics underlying the two types of tra-
jectories, we plot in Fig. 5 streamlines around a single drop
in a Newtonian (Wi = 0.0) fluid and a viscoelastic fluid each
for two capillary numbers Ca = 0.01 and Ca = 0.2. For the
two Newtonian cases [Figs. 5(a) and 5(b)], the streamlines
are similar—curved spiraling streamlines very close to the
drop and passing streamlines in the rest of the domain. In a
pair interaction, the streamlines induced by one drop influ-
ence the motion of the other drop and lead to a passing tra-
jectory. The small region of curved streamlines is too close
to the drop to trigger tumbling trajectory for any of the

Newtonian cases. On the other hand, at Wi = 2.0, Figs. 5(c)
and 5(d) show a region of spiraling streamlines extending
fore and aft of the drop. For the more deformable case
(Ca = 0.2), the region is small in extent in the velocity gradi-
ent direction to trap the second drop in pair interaction; it
leads to passing trajectory. But for Ca = 0.01, the largely
undeformed drop induces spiraling streamlines around it
which facilitates trapping the second drop into a tumbling tra-
jectory. Thus, only lower Ca and higher Wi support tumbling
trajectories in a pair interaction. Note that the spiraling
streamline pattern has been predicted analytically [64] as
well as observed numerically around a rigid sphere in visco-
elastic fluid.[65] Their spiraling nature can best be under-
stood as resulting from structural instability of the closed
streamline region near a sphere in a reversible linear Stokes
flow of Newtonian fluid. The closed streamline pattern can
be broken by any one of the symmetry-breaking nonlineari-
ties such as inertia [66,67], viscoelasticity [64], or deforma-
tion [68]. These effects distort the close streamlines of the
Newtonian Stokes flow into spiraling streamlines. The exact
topology is determined by a delicate balance between the
new force, e.g., centrifugal, or normal stresses around the
curved streamlines, and the viscous force. Subramanian and
Koch [64] performed a perturbative analysis for a shear flow
around a sphere in a second-order fluid to show this transi-
tion from closed to spiraling streamlines, which, in turn,
results in an enhanced heat transfer from the sphere.

FIG. 4. Final cross-stream separation between drop centers as a function of (a) Wi and (b) Ca for passing trajectories. (c) and (d) show the relative position
between drop centers in the flow and cross-stream directions, respectively, as a function of time at Wi = 0.8.
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Apart from the changed streamline topology around a
single drop due to viscoelasticity, pair interactions are also
affected by the dynamic evolution of the polymeric stresses as
the drops approach each other. Following Hwang et al. [28]
and Vazquez-Quesada et al [29], we plot the trace of the con-
formation tensor A [see Eq. (5)] for two cases—one passing
(Wi = 2.0, Ca = 0.2) and one tumbling (Wi = 2.0, Ca = 0.01)—
at three different instants in Fig. 6. For the passing trajectory
(top panel in Fig. 6), during compression, we notice the
increased polymeric stresses near the drop tip as was also seen
before in our single drop computation (Fig. 7 in [44]).
However, as the drops separate, the squeeze-film flow between
them during compression transitions to an extensional flow. It
leads to a string-like region of high polymeric stresses con-
necting drops during their separation, also seen in computa-
tional simulation of multiple spheres suspended in an Oldroyd
matrix [28,29]. Vazquez-Quesada et al [29]. saw such regions
of large polymer stress connecting several particles even at a
low volume fraction of 5%. They indicated that such regions
of high polymer stresses at high Wi can give rise to shear
thickening seen even at 0.5% in numerical simulations by
Yang and Shaqfeh [69]. For a low Ca of 0.01 and the same

high value of Wi = 2.0 (bottom panel of Fig. 6), the region of
high polymeric stress surrounds the less deformed drop. Note
that experimental investigation of a uniaxial elongational flow
of a rigid sphere suspension in a viscoelastic matrix indicated
an exponential increase in stresses with a strain that was
modeled by an Oldroyd-B relation indicating the same under-
lying physics at the level of individual particle separation [30].
As shown in the Appendix, the perturbation flow field due to
the presence of the viscosity-matched drop possesses an exten-
sional component contributed by the interfacial tension that
retards its deformation [see the velocity expression (A4) in the
Appendix which decreases with increasing Ca]. The poly-
meric stresses are enhanced in the extensional flow, in turn
impeding the drop separation. Higher Ca, i.e., lower interfacial
tension gives rise to a weaker extensional component, warrant-
ing higher values of Wi and higher polymeric stresses to trap
the drops in a tumbling trajectory.

Figure 7 shows a phase plot in Ca-Wi space indicating
two types of trajectories as a function of Ca and Wi. As dis-
cussed above, tumbling trajectories occur for less flexible
(small Ca) drops in a more viscoelastic matrix (large Wi). We
do not see tumbling for Ca = 0.075 and above for any value

FIG. 5. Streamlines around a single drop placed at the center of the domain and at (a) Ca = 0.01, Wi = 0.0, (b) Ca = 0.2, Wi = 0.0, (c) Ca = 0.01, Wi = 2.0, and
(d) Ca = 0.2, Wi = 2.0.

FIG. 6. The trace of the conformation tensor at three instants for a passing trajectory case Ca = 0.2, Wi = 2.0 (top panel) and a tumbling trajectory case
Ca = 0.01, Wi = 2.0 (bottom panel).
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of Wi investigated here. For very high Ca values, the drop
deformation also becomes unbounded leading to a breakup.
Previously, we have shown that higher matrix viscoelasticity
eventually enhances deformation and breakup [44]. The tum-
bling trajectory results from the increased zone of spiraling
streamlines seen around a single drop in shear (Fig. 5), as

well as the enhanced polymeric stresses in the region separat-
ing the interacting drops (Fig. 6).

Unlike a Newtonian system, obtaining a physical under-
standing of the phenomena in a viscoelastic system is diffi-
cult. The flow field governed by a system of partial
differential equations and complex constitutive equations
does not offer simple explanations. In the Appendix, we have
developed a simplified theory of the linear dimension of the
region of spiraling streamlines around a single drop as a
function of Wi and Ca. It offers an understanding of the
underlying physics of the force balance between the interfa-
cial tension and the viscoelastic effects curving the stream-
lines away from their imposed shear-induced rectilinear form
around a drop. The condition that the radius of the region of
the spiraling streamline must be sufficiently large to trap the
second drop results in an approximate quadratic scaling of
Cacritical with Wi seen in Fig. 7.

D. Effects of initial cross-stream separation in the
gradient and the vorticity directions

A large initial cross-stream separation would evidently
lead to a passing trajectory. Above, we choose to restrict the
investigation to Δy0/a ¼ 0:25. In this section, we vary this
quantity Δy0/a , 1:0 to examine its effects on the trajectory
type. Figure 8(a) shows relative trajectories of drop centers at

FIG. 7. Phase plot of types of trajectories as a function of Ca and Wi.

FIG. 8. Relative trajectory of drops at different initial cross-stream separations in the velocity gradient direction Δy0/a (all at Δz0/a ¼ 0) (a) Ca = 0.01 and
Wi = 0.0 (inset: Ca = 0.01, Wi = 2.0); (b) Ca = 0.2 and Wi = 0.0 (inset: Ca = 0.2, Wi = 2.0) and different initial cross-stream separation in the vorticity direction
Δz0/a (all at Δy0/a ¼ 0:25); (c) Ca = 0.01 and Wi = 0.0 (inset: Ca = 0.01, Wi = 2.0); (d) Ca = 0.2 and Wi = 0.0 (inset: Ca = 0.2, Wi = 2.0).
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Ca = 0.01 for two different fluid conditions Wi = 0.0 and
Wi = 2.0 (inset). The variation in Δy0/a does not change tra-
jectory types, passing for Wi = 0.0 and tumbling for Wi = 2.0.
At Wi = 0.0, all Δy0/a led to the same post-collision separa-
tion. As noted above, the results can be understood from the
streamline pattern around a single drop (Fig. 5) that induces
the trajectory in pair interactions. At Wi = 2.0, even with the
Δy0/a change, the region of spiraling streamlines around them
proved large enough to trap drops into tumbling trajectories.
However, note that the largest one Δy0/a ¼ 0:75 led to small
back and forth motion in the tumbling trajectory unlike at
smaller Δy0/a values. At Ca = 0.2, passing trajectories are seen
for all Δy0/a for Wi = 0.0 [Fig. 8(b)] and Wi = 2.0 [Fig. 8(b),
inset]. For both Weissenberg numbers, post-collision final
cross-stream separation Δyf /a increases with increasing Δy0/a,
the effects being more prominent for the viscoelastic case, in
conformity with the understanding that matrix viscoelasticity
reduces cross-stream separation, and drops tend to recover
most of their initial cross-stream separation. In Figs. 8(c)
and 8(d), we explore the effects of initial offset in the vorticity

direction Δz0/a for the same set of Ca and Wi values. For the
passing trajectories, increasing Δz0/a predictably leads to
smaller Δyf /a with sliding interactions between drops. For the
tumbling trajectories [inset of Fig. 8(c)], the circular orbits
become smaller with increasing Δz0/a. For the largest two
Δz0/a, we also note spiraling of the trajectories in conformity
with the spiraling streamlines in a flow around a single drop
noted as well as in the literature [64].

E. Effects of viscosity ratio variation

All simulations in other subsections (Secs. IV A–IV D
and IV F) are limited to the viscosity matched case.
Increasing the viscosity ratio decreases the deformation
reaching rigid spheres in the limit of λμ ! 1. Figure 9(a)
shows that increasing viscosity ratio, with all other parame-
ters kept the same (Ca = 0.2, Wi = 2.0), a passing trajectory
for λμ ¼ 1 transitions to partially tumbling but eventually
separating trajectories. The cases with λμ ¼ 5 and 10 show
passing trajectories with final cross-stream separation Δyf /a

FIG. 9. (a) Relative trajectories of interacting drops with Ca = 0.2, Wi = 2.0 for different viscosity ratios λμ. Increasing λμ transitions passing trajectories into
partially tumbling ones. (b) Relative trajectories of interacting drops with λμ ¼ 50, Wi = 2.0 for different Ca. Increasing Ca transitions tumbling trajectories into
partially tumbling ones.

FIG. 10. (a) Relative trajectories of interacting drops with Ca = 0.01 and Wi = 0.0 (inset Wi = 2.0) for different initial radius ratios (r) of the drops. (b) The
same as in (a) but for Ca = 0.2.
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progressively decreasing with the viscosity ratio. For the
highest viscosity ratios λμ ¼ 20 and 50, one obtains trajecto-
ries that tumbled once (λμ ¼ 20) or twice (λμ ¼ 50) and then
separated from each other. Figure 9(b) further investigates the
highest viscosity ratio λμ ¼ 50. As the capillary number is
decreased, the partially tumbling trajectories at Ca = 0.2 in
Fig. 9(a) become fully tumbling, closed and symmetric, at
and below Ca = 0.05.

F. Effects of unequal drops

Finally, in this section, we briefly study the case of unequal
sizes for the drops. With all the parameters the same, i.e.,
Δx0 ¼ 2:5a, Δy0 ¼ 0:25a, we use two drops with initial radii
a and ra and vary the radius ratio r. We choose two sets of
Weissenberg number and capillary number, Wi = 0.0 and 2.0
and Ca = 0.01 and 0.2. Figure 10(a) investigates the case of a
small capillary number Ca = 0.01—in the main figure
(Wi = 0.0), we notice that all radius ratios lead to passing trajec-
tories, but decreasing r leads, as expected, to decreased hin-
drance (smaller scattering cross sections) and therefore smaller
final cross-stream displacements Δyf /a. In the inset of
Fig. 10(a), the same variations for the same capillary number
but for the Wi = 2.0 leads to tumbling trajectories, with more
different drops tumbling with tighter orbits. Figure 10(b) inves-
tigates the dynamics for Ca = 0.2 with Wi = 0.0 in the main
plot and Wi = 2.0 in the inset. It shows passing trajectories for
all cases at this larger capillary number with similar variations
with varying radius ratios, i.e., decreasing final cross-stream
displacements Δyf /a with decreasing radius ratios.

V. CONCLUSION

We investigated shear-induced pair interactions between
two equal-sized Newtonian drops suspended in a viscoelastic
(modified FENE-CR) medium varying the Capillary number
(Ca) and the Weissenberg number (Wi). The matrix visco-
elasticity introduces a tumbling trajectory—drops form a
bound pair and rotate—in addition to the usual passing tra-
jectory one sees in a Newtonian system. For the passing tra-
jectories, while the increasing capillary number expectedly
increases final relative cross-stream separation, increasing
matrix viscoelasticity decreases it indicating reduced diffu-
sion of droplets in a viscoelastic medium. The tumbling tra-
jectories, also predicted numerically in pair interactions
between rigid spheres in a viscoelastic medium, are only seen
at low Ca and high Wi. With simulations sweeping the
parameter space, we show a phase plot separating the two
types of trajectories in Ca-Wi space indicating a critical Wi
below which there is no tumbling trajectory and an approxi-
mate quadratic relationship between the variables at the
phase boundary between the two trajectories. Slight varia-
tions in initial separation in the cross-stream gradient direc-
tion are shown to not influence the type of post-collision
trajectory. Initial separations in the vorticity direction and
decreasing the radius ratio between drops decreases interac-
tions leading to smaller final cross-stream displacement as
expected. An increase in the viscosity ratio leads to a transi-
tion toward tumbling trajectories. The tumbling trajectory is
discussed to result from the zone of spiraling streamlines

around the drop, which, in turn, are caused by the tension
along the curved streamlines. An approximate force balance
model has been developed that treats the tension due to the
first normal stress difference in a manner analogous to the
interfacial tension. It shows that the disturbance field due to
the drop created by these tensions acts against the rectilinear
imposed shear to give rise to a sufficiently large zone of
curved streamlines to trap an approaching drop into a tum-
bling trajectory. The model captures the scaling between crit-
ical Wi and Ca determining the transition between passing
trajectories at high Ca and low Wi to tumbling trajectories at
low Ca and high Wi. We note that the present investigation
does not account for possible coalescence, which is driven
by nonhydrodynamic (e.g., van der Waals) forces not
included in the modeling. Colliding drops at contact form a
thin film between them, which needs to drain sufficiently
under the external flow before it can rupture to coalescence
[70]. In a shear-induced drop interaction, the drops experi-
ence a glancing collision [71]; in a Newtonian passing trajec-
tory, they push against each other at the compression
quadrant before pulling away from each other in the exten-
sion quadrant, often leading to less time for drainage [72]. In
a polydimethylsiloxane (PDMS)–polyisobutylene (PIB)
binary system, the coalescence was seen to be extremely rare
and only seen when PIB was used as the dispersed phase and
PDMS as matrix [13] in the extension quadrant. However,
for a tumbling trajectory indicated here in a viscoelastic
system, the drops remain in contact for a long time that
might induce coalescence. Experimental investigations will
be needed to verify the simulated predictions as well as such
possible phenomena.
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APPENDIX: Physical model for the transition
between trajectories

In the following, we attempt physical reasoning behind
the zone of spiraling streamlines Λ � r [ (a, Rspiral) based
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on the local flow and a force balance underlying the physics
that the tension around the streamlines in a viscoelastic fluid
near a drop (which is mostly spherical at small capillary
numbers) gives rise to curved circular streamlines. Note that
in a purely viscous case, a viscosity matched drop placed in a
shear flow introduces a velocity field that changes the recti-
linear shear flow into a flow field with curved streamlines
around the drop. The imposed linear shear flow is a superpo-
sition of equal extension and rotation. The rotation is not dis-
turbed by the drop that would rotate with the same rate as
that of the imposed shear, but the interfacial tension working
against drop deformation introduces an opposing extension
flow to satisfy the boundary conditions at the interface. This
is easily seen in the perturbative analytical expression for the
deformation of a drop D ¼ (16þ 19λ)/16(λþ 1)Ca, where
D ¼ (L� B)/Lþ B), with L and B being the major and the
minor axes of an ellipsoid approximately describing the drop
shape [73]. D � Ca denotes the balance between the surface
tension-induced pressure difference with the imposed shear.

To see how the extensional disturbance flow is driven by
Ca, we use a Green’s function formulation of the Stokes
problem inside and outside the drop and obtain an exact expres-
sion for the velocity field outside the drop as a sum of the
imposed field u1(x) and a perturbation due to the drop ud(x),

uj(x) ¼ u1j (x)þ udj (x) ¼ u1j (x)�
1

8πμ

ð
Ad

Δfi(y)Gij(x, y)dA(y),

Gij(x, y) ¼ δij
jx� yj þ

(xi � yi)(xj � yj)

jx� yj3 , (A1)

Δf ¼ (f � ~f) ¼ Γ(∇ � n)n,

where Gij(x, y) is the free space Stokes Green’s function and
f and ~f are the fluid tractions at the interface from the outside
and the inside of the drop. We used the velocity continuity at
the interface as well as the viscosity matched condition
λ ¼ 1, the latter to eliminate the double layer integral (for
details, see [74] or [68]). Following the steps detailed in [68],
we expand Gij(x, y) in Taylor series around the center of the
drop yc:Gij(x, y) ¼ Gij(x, yc)þ @Gij(x, yc)/@yck(yk �yck)þ
O(a/L)3, to obtain

uj(x) ¼ u1j (x)�
1

8πμ
Gij(x, yc)

ð
Ad

Δfi(y)dA(y)

� 1
8πμ

@Gij(x, yc)
@yck

ð
Ad

[Δfi(y)(yk � yck)]dA(y): (A2)

For a force-free drop, the first term (Stokeslet) disappears.
Neglecting the higher-order terms, we obtain

uj(x) ¼ u1j (x)

� 1
8πμ

@Gij(x, yc)
@yck

Γ

ð
Ad

[(∇ � n)ni(yk � yck)]dA(y):

(A3)

We emphasize that the above result is not exact and is
valid only in the far-field r/a � 1, with r being the radial dis-
tance from the drop center, but captures the most dominant
term. Noting the symmetry of the term inside the square
bracket in i and k, the disturbance field, therefore, is

ud � (Γ/μ)(∇G)s or ud/ _γa � (1/Ca)(∇G)s: (A4)

Here, (∇G)s is the Stokes stresslet term [74,75]. Note that
the expression (A4) is not valid in the limit of Ca ! 0 (infi-
nitely large interfacial tension). For a spherical drop, the
coefficient of the stresslet [integral in Eq. (A3)] is isotropic
and hence would not contribute to the velocity field as the
stresslet is trace-free [75]. The flow remains bounded and
decays faster. This fact indicates the limited validity of such
order of estimate results.

For an order of estimate, we will treat the tension due to
the first normal stress difference along the curved streamlines
which gives rise to the enhanced zone of curved streamlines
with an analogy to the interfacial tension as follows. The
interfacial tension Γ acts at the interface between the drop
and the surrounding media. On the other hand, the elastic
tension along the curved streamlines due to the first normal
stress difference is distributed in a zone of the spiraling
streamline around the drop a , r , Rspiral. Although the
flow around a three-dimensional deformed drop is not visco-
metric, we crudely approximate it as one. Furthermore, we
assume a constant shear rate _γ appropriate for the imposed
rectilinear shear although the streamlines are curved by the
presence of the drop, thereby allowing an expression for the
first normal stress difference N1 ¼ 2λμp _γ

2 in the region
around the drop a , r , Rspiral. This results in an “effective
viscoelastic tension” in this region

Γviscoelastic � N1Δr ¼ 2λμp _γ
2(Rspiral � a)

¼ 2μ _γa(βWi)
Rspiral

a
� 1

� �
,

Γeff ¼ Γþ Γviscoelastic ¼ Γþ 2μ _γa(βWi)
Rspiral

a
� 1

� �

¼ μ _γa
1
Ca

þ 2(βWi)
Rspiral

a
� 1

� �� �
:

(A5)

Therefore, similar to Eq. (A4), with the viscoelastic
tension included the disturbance velocity is

ud/ _γa � (Γeff /μ _γa)(∇�G)s, (A6)

where nondimensional Stokeslet �G � a/r according to
Eq. (A1), and (∇�G)s � (a/r)2. Therefore, the disturbance
velocity ud/ _γa � (Γeff /μ _γa)(a/r)2 deforms the rectilinear
streamlines due to the imposed shear near the drop. Far
away it decays as (a/r)2 leading to straight streamlines there.
A balance between the disturbance velocity and the rectilin-
ear imposed shear velocity u1/ _γa ¼ y/a � r/a, at a distance
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r ¼ Rspiral obtains

(Γeff /μ _γa)(a/Rspira)
3 � 1: (A7)

In such an approximate force balance with orders of the
estimate, the exact magnitude of the terms cannot be ascer-
tained. Therefore, we introduce an arbitrary strength for the
relative magnitude of the shear as A,

1
Ca

þ 2(βWi)
Rspiral

a
� 1

� �� �
(a/Rspiral)

3 ¼ A, (A8)

using Eq. (A5). Noting that the spiral region is limited in
extent, A is large. For a tumbling trajectory, the spiral region
needs to be at least Rspiral . 2a [see Fig. 5(c)] to trap a
second drop during the shear-induced interaction. As noted
before, relation (A4) is not valid for Ca ! 0, with the stress-
let term being identically zero in the limit. Therefore,
although Eq. (A8) obtains an arbitrarily large Rspiral/a as
Ca ! 0 in a Newtonian medium (Wi = 0), we know that
Rspiral/a is limited to a value far less than 2 in that limit (a
spherical drop). Below a critical Wi, for howsoever small Ca
one does not get tumbling trajectories. In any event, using
Rspiral/a ¼ 2, we obtain from Eq. (A8),

Ca ¼ 1
8A[1� (βWi)/(2A)]

¼ 1
8A

1þ βWi

2A
þ βWi

2A

� �2

þ � � �
" #

,

(A9)

where noting that A is a large number, we introduced a
Binomial expansion to obtain a quadratic in Wi expression
for Ca, approximately seen in Fig. 7. Note that just as the
problem noted above for Eq. (A8) due to the crude approxi-
mation, Eq. (A9) obtains a non-zero Ca value for Wi = 0 in
contrast to the flow around a spherical drop or the observa-
tion in Fig. 7. For instance, in Eqs. (A4) and (A5), one
assumes that the strengths of the stresslet term [e.g., the inte-
gral in Eq. (A3)] are constant, which vary with both Ca and
Wi. Therefore, one cannot directly compare the prediction
Eq. (A9) with the computational observation of Fig. 7. But
the expression encapsulates the dynamics of the interfacial
and the viscoelastic tensions, which we note from Eq. (A5)
are in the ratio βWiCa determining the streamline geometry
around a drop in a viscoelastic medium.
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